

Optically Coupled Isolator Type 3C92C, 3C92CHR, 3C92CTX, 3C92CTXV

Features

- TO-72 hermetic package
- 1 kVDC electrical isolation
- High current transfer ratio

Description

The 3C92C is an optically coupled isolator consisting of an infrared emitting diode and an NPN silicon phototransistor mounted in a hermetically sealed TO-72 package.

Typical screening and lot acceptance tests are provided on page 13-4.

The 3C92CHR device has been 100% screened as a TXV device although Group B and C testing is not performed.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Input to Output Isolation Voltage	±1kVDC ⁽¹⁾
Operating Temperature Range	
Storage Temperature Range	
Lead Soldering Temperature [1/16 inch (1.6 mm) from case, 5 se	c. with soldering
iron]	240° C ⁽²⁾
Power Dissipation (Output Transistor)	200 mW ⁽³⁾
Power Dissipation (Input Diode)	60 mW ⁽⁴⁾

Notes

- (1) Measured with input leads shorted together and output leads shorted together.
- (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 2.0 mW/° C above 25° C. (4) Derate linearly 0.60 mW/° C above 65° C.

Types 3C92C, 3C92CHR, 3C92CTX, 3C92CTXV

Electrical Characteristics ($T_A = 25^{\circ}$ C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input Diode						
V _F	Forward Voltage			1.2 1.5	V V	$I_F = 2 \text{ mA}$ $I_F = 50 \text{ mA}$
VR	Reverse Voltage	7			V	I _R = 0.1 mA
I _R	Reverse Current			1	μА	V _R = 3 V
C _{IN}	Diode Capacitance		25		pF	V = 0, f = 1 MHz
Phototransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50			V	I _C = 10 mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7			V	I _C = 10 μA
I _{CEO}	Collector-Emitter Leakage Current			10 50	nA nA	V _{CE} = 5 V V _{CE} = 50 V
Coupled						
I _{C(ON)}	On-State Collector Current	4.0 3.0		 20	mA mA	$I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$ $I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$
VCE(SAT)	Collector-Emitter Saturation Voltage			0.4	V	I _F = 50 mA, I _C = 10 mA
t _{on}	Turn on Time			9	μs	$V_{CC} = 5 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \Omega$
t _{off}	Turn off Time			6	μs	
C _{IO}	Input-to-Output Capacitance		2	2.5	pF	f = 1 MHz
Rio	Isolation Resistance	10 ⁹			Ω	V _{IO} = +1 kV