|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   | REVISI       | ONS                             |                 |                                           |                                      |                                |                                   |                                       |                                      |                   |         |         |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|---------------------------------|------------------------------------------------------------|----------------------------------------------------------------|-------------------|--------------|---------------------------------|-----------------|-------------------------------------------|--------------------------------------|--------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|-------------------|---------|---------|
| LTR                                                                                                                                      | DESCRIPTION                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   |              |                                 | DATE (YR-MO-DA) |                                           |                                      |                                | APPROVED                          |                                       |                                      |                   |         |         |
| А                                                                                                                                        | Char                                                               | nges in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | accord  | ccordance with NOR 5962-R041-92.      |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           |                                      | 91-11-25                       |                                   |                                       | M. L. Poelking                       |                   | g       |         |
| В                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | lance w                               |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           | 93-08-13                             |                                |                                   | M. L. Poelking                        |                                      |                   |         |         |
| С                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | evel V.                               |                                 |                                                            |                                                                |                   | out          | LTG                             |                 |                                           |                                      |                                | )7-17                             |                                       | T. M. Hess                           |                   |         |         |
| D                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           |                                      |                                | 06-14                             |                                       | -                                    | Thomas            |         |         |
| E                                                                                                                                        |                                                                    | Update boilerplate to MIL-PRF-38535 requirements LTC<br>Update boilerplate to current MIL-PRF-38535 requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                       |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           | )6-11                                |                                |                                   | Thomas                                |                                      |                   |         |         |
|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           |                                      |                                |                                   |                                       |                                      |                   |         |         |
|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           |                                      |                                |                                   |                                       |                                      |                   |         |         |
| REV<br>SHEET                                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       |                                 |                                                            |                                                                |                   |              |                                 |                 |                                           |                                      |                                |                                   |                                       |                                      |                   |         |         |
| SHEET<br>REV                                                                                                                             | E 15                                                               | E<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E<br>17 | E 18                                  | E<br>19                         | E 20                                                       | E 21                                                           | E 22              | E<br>23      | E 24                            |                 |                                           |                                      |                                |                                   |                                       |                                      |                   |         |         |
| SHEET                                                                                                                                    | 15                                                                 | E<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E<br>17 | E<br>18<br>REV                        | 19                              | E 20                                                       | E<br>21<br>E                                                   | E<br>22<br>E      | E<br>23<br>E | E<br>24<br>E                    | E               | E                                         | E                                    | E                              | E                                 | E                                     | E                                    | E                 | E       | E       |
| SHEET<br>REV<br>SHEET                                                                                                                    | 15                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 18                                    | 19<br>/                         |                                                            | 21                                                             | 22                | 23           | 24                              | E<br>5          | E                                         | E<br>7                               | E 8                            | E<br>9                            | E<br>10                               | E<br>11                              | E<br>12           | E<br>13 | E<br>14 |
| SHEET<br>REV<br>SHEET<br>REV STATUS<br>OF SHEETS<br>PMIC N/A                                                                             |                                                                    | 16<br>RD<br>CUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 18<br>REV<br>SHE<br>PRE               | 19<br>/<br>EET<br>PAREI         | 20<br>20<br>D BY<br>Todd D<br>BY                           | 21<br>E<br>1                                                   | 22<br>E<br>2<br>k | 23<br>E      | 24<br>E                         | 5               | 6<br>EFEN                                 | 7<br>SE SI                           | 8<br>UPPL                      | 9<br>.Y CE<br>, OHI0              |                                       | 11<br>R COL<br>218-3                 | 12<br>_UMB        | 13      |         |
| SHEET<br>REV<br>SHEET<br>REV STATUS<br>OF SHEETS<br>PMIC N/A<br>STA<br>MICRO<br>DR<br>THIS DRAW                                          | ANDAF<br>OCIRC<br>AWIN<br>ING IS A<br>USE BY<br>ARTMEN<br>ENCIES ( | The second secon | BLE     | 18<br>REV<br>SHE<br>PRE<br>CHE        | 19<br>/<br>EET<br>PAREI         | 20<br>D BY<br>Todd D<br>BY<br>Ray M<br>D BY<br>D BY<br>Don | 21<br>E<br>1<br>D. Cree<br>Monnin<br>Cool                      | 22<br>E<br>2<br>k | 23<br>E      | 24<br>E<br>4<br>MIC<br>CO       | 5<br>DI<br>CROC | 6<br>EFEN<br>CC                           | 7<br>SE SI<br>DLUN<br>http<br>JIT, I | 8<br>UPPL<br>IBUS<br>p://ww    | 9<br>.Y CE<br>, OHIC<br>/w.ds<br> | 10<br>NTER<br>D 432                   | 11<br>218-32<br>a.mil                | 12<br>-UMB<br>990 | 13      |         |
| SHEET<br>REV<br>SHEET<br>REV STATUS<br>OF SHEETS<br>PMIC N/A<br>STA<br>MICRO<br>DR<br>THIS DRAWU<br>FOR U<br>DEPA<br>AND AGE<br>DEPARTME | ANDAF<br>OCIRC<br>AWIN<br>ING IS A<br>USE BY<br>ARTMEN<br>ENCIES ( | The second secon | BLE     | 18<br>REV<br>SHE<br>PRE<br>CHE<br>APP | 19<br>/<br>EET<br>PAREI<br>CKED | 20<br>D BY<br>Todd D<br>BY<br>Ray M<br>D BY<br>D BY<br>Don | 21<br>E<br>1<br>D. Cree<br>Monnin<br>Cool<br>DVAL E<br>ne 1988 | 22<br>E<br>2<br>k | 23<br>E      | 24<br>E<br>4<br>MIC<br>CO<br>MO | 5<br>DI<br>CROC | 6<br>EFEN<br>CC<br>CIRCI<br>OLLE<br>ITHIC | 7<br>SE SI<br>DLUN<br>http<br>JIT, I | 8<br>IBUS<br>DIGIT<br>EMOTICON | 9<br>.Y CE<br>, OHIC<br>/w.ds<br> | 10<br>NTER<br>D 432<br>cc.dla<br>CMO3 | 11<br>218-3<br>a.mil<br>S, BL<br>NAL | 12<br>-UMB<br>990 | US      |         |

### 1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following examples.

For device classes M and Q: 5962 88628 01 Federal RHA Device Case Lead stock class designator type outline finish (see 1.2.2) (see 1.2.5) designator (see 1.2.1) (see 1.2.4) \/ Drawing number For device class V: 5962 88628 н 01 Х Federal RHA Device Device Case Lead stock class designator class outline finish type designator (see 1.2.1) (see 1.2.2) designator (see 1.2.4) (see 1.2.5) (see 1.2.3) V Drawing number 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: **Circuit function** Device type Generic number 01 UT1553 BCRT Bus controller remote terminal 1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as listed below. Since the device class designator has been added after the original issuance of this drawing, device classes M and Q designators will not be included in the PIN and will not be marked on the device. Device class Device requirements documentation Vendor self-certification to the requirements for MIL-STD-883 compliant, non-Μ JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A Q or V Certification and qualification to MIL-PRF-38535

STANDARD<br/>MICROCIRCUIT DRAWINGSIZE<br/>ASIZE<br/>A5962-88628DEFENSE SUPPLY CENTER COLUMBUS<br/>COLUMBUS, OHIO 43218-3990REVISION LEVEL<br/>ESHEET<br/>2

| 1.2.4 <u>Case outline(s)</u> . The ca                                                                                                                                                                                                               | se outline(s) are as des                                                                                                                          | signated                                          | in MIL-STD-1835                                             | and as follows:                                                                                      |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|
| Outline letter Des                                                                                                                                                                                                                                  | criptive designator                                                                                                                               | <u>Termi</u>                                      | nals                                                        | Package style                                                                                        |            |
| X C<br>Y C                                                                                                                                                                                                                                          | QCC1-F132<br>MGA15-P84<br>QCC2-J84<br>QCC1-N84                                                                                                    | 132<br>84<br>84<br>84                             | F                                                           | Jnformed-lead chip carrier<br>Pin grid array<br>J" lead chip carrier<br>Square leadless chip carrier |            |
| 1.2.5 <u>Lead finish</u> . The lead fir appendix A for device class M.                                                                                                                                                                              | nish is as specified in M                                                                                                                         | IIL-PRF-                                          | 38535 for device o                                          | classes Q and V or MIL-PR                                                                            | F-38535,   |
| 1.3 Absolute maximum rating                                                                                                                                                                                                                         | <u>s. 1</u> /                                                                                                                                     |                                                   |                                                             |                                                                                                      |            |
| DC input/dc output voltage<br>Storage temperature rang<br>Maximum power dissipatio<br>Maximum junction temper                                                                                                                                       | e range<br>e<br>on (P <sub>D</sub> )<br>ature (T <sub>J</sub> )<br>on-to-case (θ <sub>JC</sub> )<br>tt (I <sub>OS</sub> ):<br>R , DMACK , STDINTL |                                                   |                                                             | +175°C<br>See MIL-STD-183<br>±150 mA                                                                 | +0.3 V dc  |
| 1.4 <u>Recommended operating</u>                                                                                                                                                                                                                    | conditions.                                                                                                                                       |                                                   |                                                             |                                                                                                      |            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                   |                                                             | 4.5 V dc to 5.5 V<br>55°C to +125°C                                                                  | dc         |
| 1.5 Radiation features.                                                                                                                                                                                                                             |                                                                                                                                                   |                                                   |                                                             |                                                                                                      |            |
| Single event phenomenor                                                                                                                                                                                                                             | n (SEP) effective<br>no upsets or latchup (s<br>llse)                                                                                             | see 4.4.4                                         | .4)                                                         | <u>4</u> /<br><u>4</u> /                                                                             | ,<br>2     |
| Fault coverage measurem<br>(MIL-STD-883, test met                                                                                                                                                                                                   | nent of manufacturing lo                                                                                                                          |                                                   |                                                             | 86.5 percent                                                                                         |            |
| <ul> <li><u>1</u>/ Stresses above the absolute maximum levels may degrae</li> <li><u>2</u>/ Must withstand the added P</li> <li><u>3</u>/ Limits are guaranteed by de order or contract.</li> <li><u>4</u>/ When characterized as a rest</li> </ul> | de performance and aff<br><sup>D</sup> due to short circuit tes<br>sign or process but not<br>sult of the procuring act                           | ect reliat<br>st, e.g. l <sub>o</sub><br>producti | pility.<br>s.<br>on tested unless s<br>quest, the condition | specified by the customer th                                                                         |            |
| STAND<br>MICROCIRCUI                                                                                                                                                                                                                                | T DRAWING                                                                                                                                         |                                                   | SIZE<br>A                                                   |                                                                                                      | 5962-88628 |
| DEFENSE SUPPLY CE<br>COLUMBUS, OHI                                                                                                                                                                                                                  |                                                                                                                                                   |                                                   |                                                             | REVISION LEVEL<br>E                                                                                  | SHEET<br>3 |

### 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

### DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

| MIL-STD-883  | - | Test Method Standard Microcircuits.          |
|--------------|---|----------------------------------------------|
| MIL-STD-1835 | - | Interface Standard Electronic Component Case |

### DEPARTMENT OF DEFENSE HANDBOOKS

| MIL-HDBK-103 | - | List of Standard Microcircuit Drawings. |
|--------------|---|-----------------------------------------|
| MIL-HDBK-780 | - | Standard Microcircuit Drawings.         |

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

Outlines.

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents are the issues of the documents cited in the solicitation or contract.

## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices

(Copies of these documents are available online at <u>http://www.astm.org</u> or from ASTM International 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

# 3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Functional block diagram</u>. The functional block diagram shall be as specified on figure 2.

3.2.4 <u>Test circuit and switching waveforms</u>. The test circuit and switching waveforms shall be as specified on figure 3.

3.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as specified on figure 4.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628     |
|-------------------------------------------------------------|-----------|---------------------|----------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET <b>4</b> |

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-PRF-38535, appendix A).

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628 |
|-------------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET 5    |

| Test                                               | Symbol           | $\begin{array}{c} \mbox{Conditions} & \underline{1}/\\ 4.5 \mbox{ V} \leq \mbox{V}_{DD} \leq 5.5 \mbox{ V}\\ -55^{\circ}\mbox{C} \leq \mbox{T}_{C} \leq +125^{\circ}\mbox{C}\\ \mbox{unless otherwise specified} \end{array}$ |                           | Group A<br>subgroups | Device<br>type | Limits |      | Unit |
|----------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|----------------|--------|------|------|
|                                                    |                  |                                                                                                                                                                                                                               |                           |                      |                | Min    | Max  |      |
| Low level input voltage,<br>TTL inputs             | V <sub>IL</sub>  |                                                                                                                                                                                                                               |                           | 1, 2, 3              | All            |        | 0.8  | V    |
| High level input voltage,<br>TTL inputs <u>2</u> / | V <sub>IH</sub>  |                                                                                                                                                                                                                               |                           | 1, 2, 3              | All            | 2.0    |      | V    |
| Input leakage current,<br>TTL inputs               | I <sub>IN</sub>  | $V_{IN} = V_{DD} \text{ or }$                                                                                                                                                                                                 | V <sub>SS</sub>           | 1, 2, 3              | All            | -1     | 1    | μA   |
|                                                    |                  |                                                                                                                                                                                                                               | M, D, P, L,<br>R, F, G, H | 1                    | All            | -10    | 10   |      |
| Inputs with pulldown<br>resistors                  |                  | $V_{IN} = V_{DD}$                                                                                                                                                                                                             |                           | 1, 2, 3              | All            | -1     | 1    |      |
|                                                    |                  |                                                                                                                                                                                                                               | M, D, P, L,<br>R, F, G, H | 1                    | All            | -10    | 10   |      |
| Inputs with pull-up resistors                      |                  | $V_{IN} = V_{SS}$                                                                                                                                                                                                             |                           | 1, 2, 3              | All            | -550   | -80  |      |
|                                                    |                  |                                                                                                                                                                                                                               | M, D, P, L,<br>R, F, G, H | 1                    | All            | -900   | -150 |      |
| Low level output voltage,<br>TTL outputs           | V <sub>OL</sub>  | I <sub>OL</sub> = 3.2 mA                                                                                                                                                                                                      |                           | 1, 2, 3              | All            |        | 0.4  | V    |
| High level output voltage,<br>TTL outputs          | V <sub>OH</sub>  | I <sub>OH</sub> = -400 μA                                                                                                                                                                                                     | Ą                         | 1, 2, 3              | All            | 2.4    |      | V    |
| Three-state output leakage current TTL outputs     | I <sub>OZ</sub>  | $V_{OUT} = V_{DD} O$                                                                                                                                                                                                          | or V <sub>SS</sub>        | 1, 2, 3              | All            | -10    | 10   | μA   |
| Short-circuit output current                       | I <sub>OS</sub>  | V <sub>DD</sub> = 5.5 V,                                                                                                                                                                                                      | $V_{OUT} = V_{DD}$        | 1, 2, 3              | All            |        | 100  | mA   |
|                                                    |                  | V <sub>DD</sub> = 5.5 V,                                                                                                                                                                                                      | V <sub>OUT</sub> = 0 V    | 1, 2, 3              | All            | -100   |      |      |
| Quiescent current <u>5</u> /                       | Q <sub>IDD</sub> |                                                                                                                                                                                                                               |                           | 1, 2, 3              | All            |        | 3    | mA   |
| Input capacitance <u>6</u> /                       | C <sub>IN</sub>  | See 4.4.1c                                                                                                                                                                                                                    |                           | 4                    | All            |        | 15   | pF   |
| Output capacitance 6/                              | C <sub>OUT</sub> |                                                                                                                                                                                                                               |                           | 4                    | All            |        | 20   | pF   |
| Bidirect I/O capacitance <u>6</u> /                | C <sub>IO</sub>  |                                                                                                                                                                                                                               |                           | 4                    | All            |        | 25   | pF   |
| Functional test                                    |                  | See 4.4.1b                                                                                                                                                                                                                    |                           | 7, 8                 | All            |        |      |      |

See footnotes at end of table.

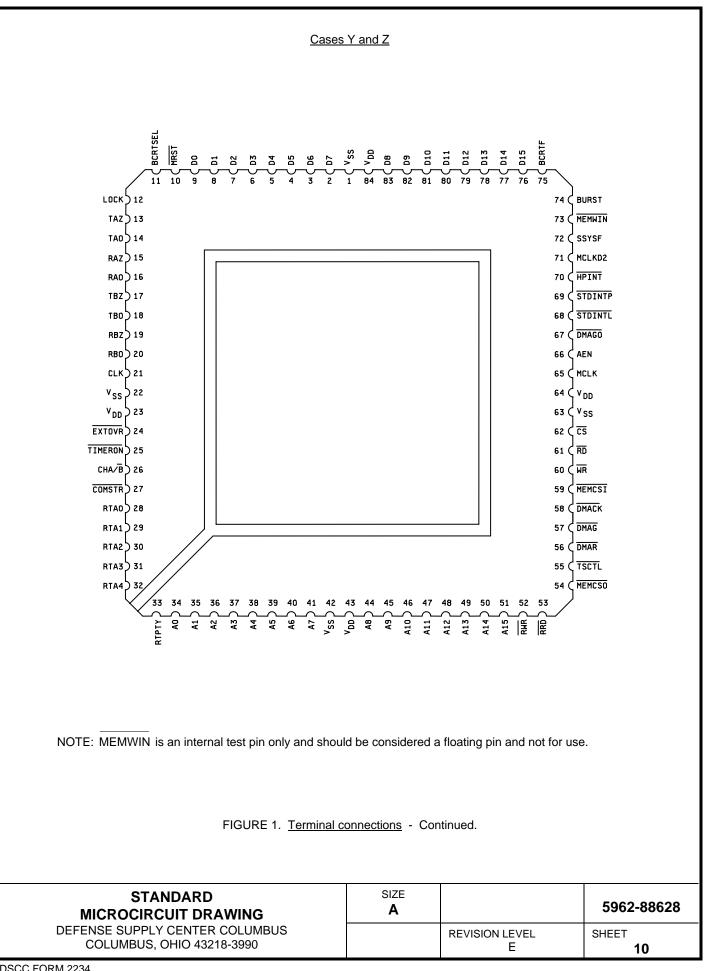
|                                  | TABLE IA           | A. Electrical performance chara                                                                                                                                        | cteristics - C       | ontinued.      |     |      |      |
|----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-----|------|------|
| Test                             | Symbol             | $\begin{array}{l} Conditions  \underline{1}/\\ 4.5 \ V \leq V_{DD} \leq 5.5 \ V\\ -55^\circ C \leq T_C \leq +125^\circ C\\ unless \ otherwise \ specified \end{array}$ | Group A<br>subgroups | Device<br>type | Lin | nits | Unit |
|                                  |                    |                                                                                                                                                                        |                      |                | Min | Max  |      |
| DMAG (L) to DMACK (L)            | t <sub>PHL1</sub>  | See figure 3. <u>7</u> /                                                                                                                                               | 9, 10, 11            | All            | 0   | 45   | ns   |
| MCLK (H) to RRD (L)              | t <sub>IOHL1</sub> |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 60   | ns   |
| RWR (L) to DATA valid <u>8</u> / | t <sub>OOZL1</sub> |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 30   | ns   |
| MCLK (H) to MCLKD2 (H)           | t <sub>PLH1</sub>  |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 40   | ns   |
| MCLK (H) to RWR (L)              | t <sub>IOHL2</sub> |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 60   | ns   |
| RD + CS (L) to DATA valid        | t <sub>PHL2</sub>  |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 60   | ns   |
| RD (L) to RRD (L)                | t <sub>PHL3</sub>  |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 30   | ns   |
| WR (L) to RWR (L)                | t <sub>PHL4</sub>  |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 30   | ns   |
| MEMSCI (L) to                    | t <sub>PHL5</sub>  |                                                                                                                                                                        | 9, 10, 11            | All            | 0   | 30   | ns   |
| MEMSCO (L)                       |                    |                                                                                                                                                                        |                      |                |     |      |      |

- RHA devices supplied to this drawing are characterized at all levels M, D, L, R, F, G and H of irradiation. However, this <u>1</u>/ device is only tested at the 'H' level. Pre and Post irradiation values are identical unless otherwise specified in Table IA. When performing post irradiation electrical measurements for any RHA level,  $T_A = +25^{\circ}C$ .
- <u>2</u>/ Radiation hardened technology shall have a  $V_{IH}$  pre-irradiation of 2.2 V.
- <u>3</u>/ Guaranteed to the limit specified in table I, if not tested.
- Not more than one output may be shorted at a time for a maximum duration of one second. <u>4</u>/
- <u>5</u>/ All inputs with internal pull-ups should be left floating. All other inputs should be tied high or low.
- The capacitance measurements shall be made between the indicated terminal and ground at a frequency of 1 MHz at T<sub>c</sub> of <u>6</u>/ +25°C. The dc bias of the measuring instrument shall 0 ±0.1 V. The ac signal amplitude shall be less than 50 mV RMS.
- <u>7</u>/ Switching tests are performed with  $V_{IH} = V_{DD}$  and  $V_{IL} = 0.0$  V as input test conditions and output transition times are measured at 1.4 V.
- Timing is not valid for RT timer field of message status word. The timer value may update during a DMA memory write. 8/

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628 |
|-------------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET 7    |

| TABLE IB. | SEP test limits. | <u>1</u> / | <u>2</u> / |
|-----------|------------------|------------|------------|
|-----------|------------------|------------|------------|

| Device<br>type | T <sub>A</sub> =<br>Temperature | V <sub>CC</sub> =                                         | 4.5 V                                                             | Bias for latch-up test $V_{CC}$ =5.5 V |
|----------------|---------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|
|                | ±10°C <u>3</u> /                | Effective LET<br>No upsets<br>[MEV/(mg/cm <sup>2</sup> )] | Maximum device<br>cross section (Cm <sup>2</sup> )<br>(LET = 120) | no latch-up<br>LET <u>3</u> /          |
| All            | +25°C                           | ≥ 55                                                      | $\leq$ 6.7 x 10 <sup>-5</sup>                                     | ≤ 80                                   |


NOTE: Devices that contain cross coupled resistance must be tested at the maximum rated  $T_A$ .

<u>1</u>/ For SEP test conditions, see 4.4.4.4 herein.
 <u>2</u>/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity.
 <u>3</u>/ Worst case temperature T<sub>A</sub> = +125°C.

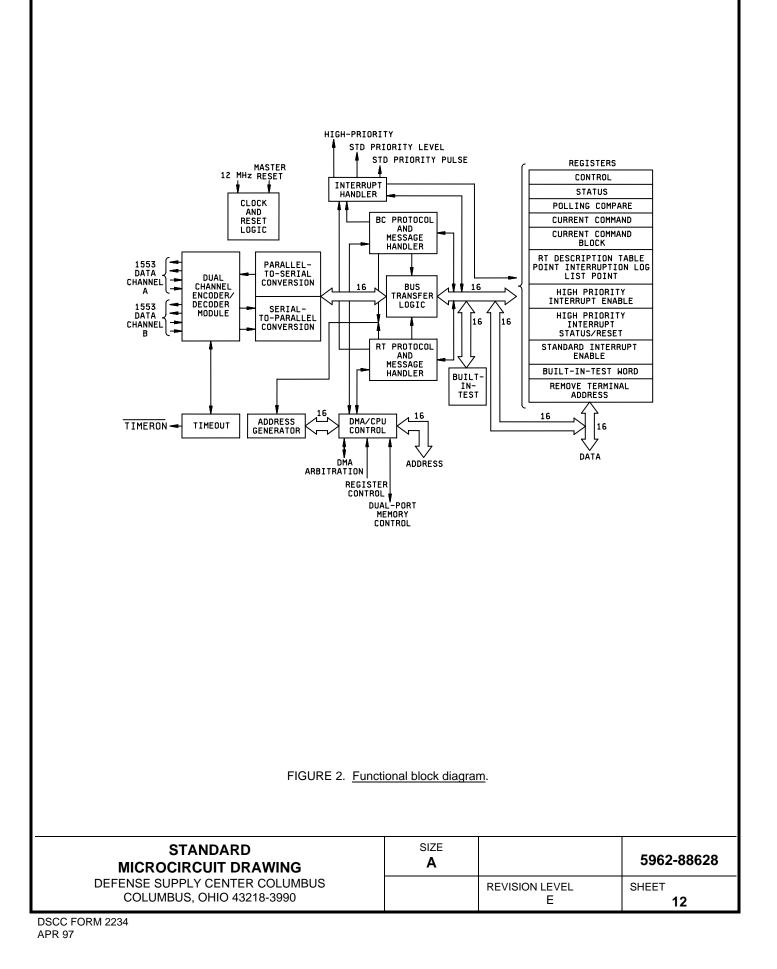
| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628 |
|-------------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET<br>8 |

<u>Case X</u>

| L       | BCRTSE                                                      | O<br>el tao  | O<br>RAZ             | О<br>твz    | O<br>RBO                          | O<br>V <sub>DD</sub>    | O<br>Extovr           | O<br>Comst  | R RTA:              | O<br>1 RTA2     | O<br>rta4   |           |
|---------|-------------------------------------------------------------|--------------|----------------------|-------------|-----------------------------------|-------------------------|-----------------------|-------------|---------------------|-----------------|-------------|-----------|
| К       | O<br>D0                                                     | )<br>Lock    | O<br>taz             | O<br>RAO    | ()<br>RBZ                         | О<br>тво -              | O<br>TIMERON          | O<br>N RTAO | O<br>RTA3           | O<br>rtpty      | O<br>4 A1   |           |
| J       | O<br>D1                                                     | O<br>MRST    |                      |             | )<br>Clk                          | $^{\rm O}_{\rm v_{SS}}$ | O<br>cha∕b            |             |                     | O<br>A0         | ()<br>A2    |           |
| Н       | 0<br>D3                                                     | O<br>D2      |                      |             |                                   |                         |                       |             |                     | ()<br>A3        | ()<br>A4    |           |
| G       | O<br>D6                                                     | ()<br>D5     | ()<br>D4             |             |                                   |                         |                       |             | ()<br>A5            | ()<br>A6        | ()<br>A7    |           |
| F       | O<br>D7                                                     | ()<br>D10    | O<br>V <sub>SS</sub> |             |                                   |                         |                       |             | $\bigcirc_{v_{DD}}$ | $_{v_{ss}}^{O}$ | ()<br>A11   |           |
| E       | O<br>D8                                                     | 0<br>D9      | $_{v_{DD}}^{O}$      |             |                                   |                         |                       |             | ()<br>A8            | ()<br>A10       | ()<br>A9    |           |
| D       | O<br>D11                                                    | ()<br>D12    |                      |             |                                   |                         |                       |             |                     | ()<br>A13       | ()<br>A12   |           |
| С       | O<br>D13                                                    | ()<br>D15    |                      |             | )<br>MCLK                         | $\overset{O}{v_{DD}}$   |                       |             |                     | $\frac{O}{RWR}$ | ()<br>A14   |           |
| В       | O<br>D14                                                    | O<br>BCRTF I |                      | N HPIN      | $\frac{O}{\text{f} \text{ DMAG}}$ | ō v <sub>ss</sub>       | $\frac{O}{RD}$        | O<br>dmack  | O<br>tsctl          | O<br>Memcs      | O<br>30 A15 |           |
| А       | BURST                                                       | O<br>SSYSF   | O<br>S<br>1CLKD2     | O<br>STDINT | P AEN T                           | O<br>stdin              | TL CS R               | O<br>1EMSCI | O<br>Dmag           |                 |             |           |
|         | 1                                                           | 2            | 3                    | 4           | 5                                 | 6                       | 7                     | 8           | 9                   | 10              | 11          |           |
| NOTE: M | EMWIN is                                                    | an intern    | nal test p           | -           |                                   |                         | onsidere<br>connectio |             | ing pin             | and not         | for use     |           |
|         | ROCIRC                                                      |              |                      |             |                                   |                         | SIZE<br><b>A</b>      |             |                     |                 |             | 5962-8862 |
|         | DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |              |                      |             | RE                                | VISION L                | EVEL<br>E             |             | SHEET<br><b>9</b>   |                 |             |           |



<u>Case T</u>


| Terminal<br>number | Terminal<br>symbol | Terminal<br>number | Terminal<br>symbol | Terminal<br>number | Terminal<br>symbol | Terminal<br>number | Terminal<br>symbol |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1                  | V <sub>SS</sub>    | 34                 | V <sub>DD</sub>    | 67                 | V <sub>SS</sub>    | 100                | V <sub>DD</sub>    |
| 2                  | LOCK               | 35                 | RTPTY              | 68                 | MEMCSO             | 101                | BCRTF              |
| 3                  | TAZ                | 36                 | A0                 | 69                 | TSCTL              | 102                | D15                |
| 4                  | TAO                | 37                 | A1                 | 70                 | DMAR               | 103                | D14                |
| 5                  | NC                 | 38                 | NC                 | 71                 | NC                 | 104                | NC                 |
| 6                  | NC                 | 39                 | NC                 | 72                 | DMAG               | 105                | D13                |
| 7                  | RAZ                | 40                 | A2                 | 73                 | NC                 | 106                | NC                 |
| 8                  | NC                 | 41                 | A3                 | 74                 | DMACK              | 107                | D12                |
| 9                  | RAO                | 42                 | A4                 | 75                 | MEMCSI             | 108                | D11                |
| 10                 | TBZ                | 43                 | NC                 | 76                 | NC                 | 109                | NC                 |
| 11                 | ТВО                | 44                 | NC                 | 77                 | WR                 | 110                | D10                |
| 12                 | NC                 | 45                 | A5                 | 78                 | NC                 | 111                | NC                 |
| 13                 | RBZ                | 46                 | NC                 | 79                 | RD                 | 112                | D9                 |
| 14                 | NC                 | 47                 | A6                 | 80                 | NC                 | 113                | NC                 |
| 15                 | RBO                | 48                 | NC                 | 81                 | CS                 | 114                | D8                 |
| 16                 | V <sub>SS</sub>    | 49                 | V <sub>SS</sub>    | 82                 | V <sub>SS</sub>    | 115                | V <sub>DD</sub>    |
| 17                 | V <sub>DD</sub>    | 50                 | V <sub>DD</sub>    | 83                 | V <sub>DD</sub>    | 116                | V <sub>SS</sub>    |
| 18                 | CLK                | 51                 | A7                 | 84                 | NC                 | 117                | NC                 |
| 19                 | NC                 | 52                 | A8                 | 85                 | MCLK               | 118                | D7                 |
| 20                 | EXTOVR             | 53                 | MC                 | 86                 | AEN                | 119                | D6                 |
| 21                 | NC                 | 54                 | A9                 | 87                 | NC                 | 120                | D5                 |
| 22                 | TIMERON            | 55                 | NC                 | 88                 | DMAGO              | 121                | NC                 |
| 23                 | NC                 | 56                 | A10                | 89                 | STDINTL            | 122                | D4                 |
| 24                 | CHA/B              | 57                 | A11                | 90                 | STDINTP            | 123                | NC                 |
| 25                 | COMSTR             | 58                 | A12                | 91                 | NC                 | 124                | D3                 |
| 26                 | NC                 | 59                 | NC                 | 92                 | HPINT              | 125                | D2                 |
| 27                 | RTAO               | 60                 | A13                | 93                 | NC                 | 126                | NC                 |
| 28                 | NC                 | 61                 | A14                | 94                 | MCLKD2             | 127                | D1                 |
| 29                 | RTA1               | 62                 | NC                 | 95                 | NC                 | 128                | NC                 |
| 30                 | RTA2               | 63                 | A15                | 96                 | SSYSF              | 129                | D0                 |
| 31                 | RTA3               | 64                 | RWR                | 97                 | TEST               | 130                | MRST               |
| 32                 | RTA4               | 65                 | RRD                | 98                 | BURST              | 131                | BCRTSEL            |
| 33                 | V <sub>SS</sub>    | 66                 | V <sub>DD</sub>    | 99                 | V <sub>SS</sub>    | 132                | V <sub>DD</sub>    |

NOTES:

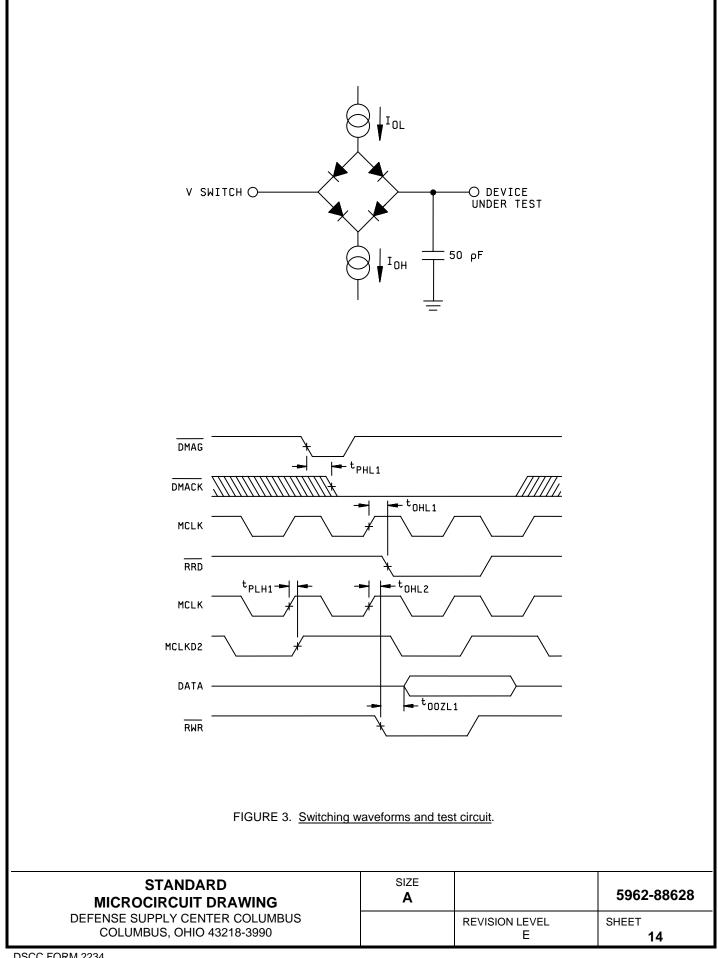
The following terminals are active low: 20, 22, B of terminal 24, 25, 64, 65, 68, 69, 70, 72, 74, 75, 77, 79, 81, 88, 89, 90, 92, and 130.
 NC = No connection.

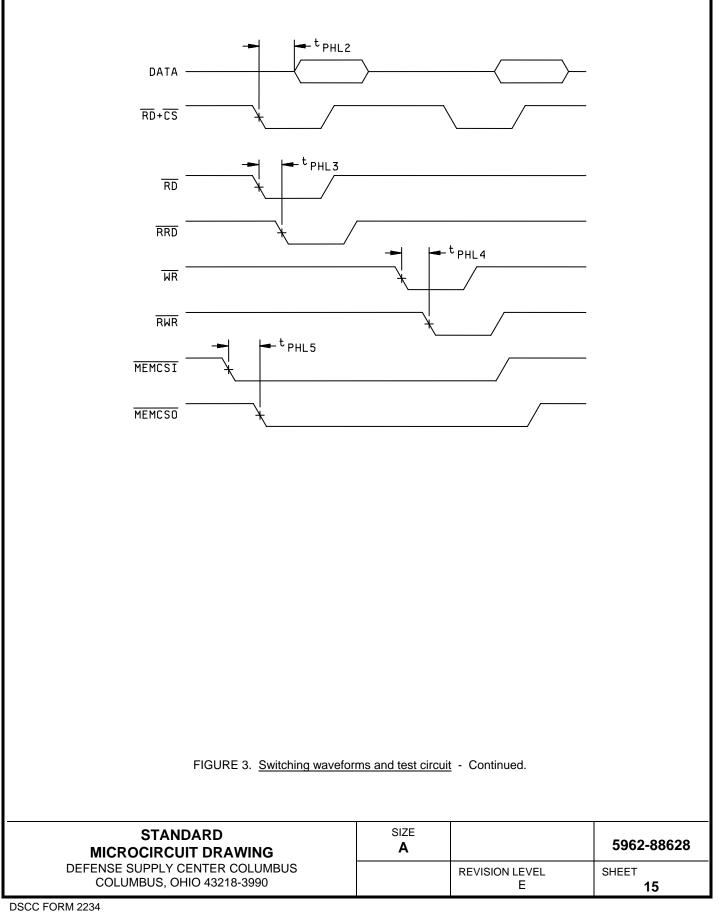
FIGURE 1. Terminal connections - Continued.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br>A |                | 5962-88628 |
|----------------------------------|-----------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |           | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |           | E              | 11         |



|                     | Г                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|---------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| BIPHASE<br>OUT      | TAZ                                                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                    |                  |
| BIPHASE<br>IN       | RAZ                                                                                   | 15 (L3)     (G9) 39     A5       16 (K4)     (G10) 40     A6       19 (K5)     (G11) 41     A7       20 (L5)     (E9) 44     A8                                                                                                                                                                                                                                                                                          | ADDRESS<br>LINES |
| TERMINAL<br>ADDRESS | RTAO                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                     |                  |
| STATUS<br>SIGNALS   | STDINTL<br>STDINTP<br>HPINT<br>TIMERON<br>COMSTR<br>SSYSF<br>BCRTF<br>CHA/B<br>MEMWIN | 68       (A6) (SEE NOTE 2)       (K1) 9       D0         69       (A4)       (J1) 8       D1         70       (B4) (SEE NOTE 2)       (H1) 6       D2         25       (K7)       (H1) 6       D3         27       (L8)       (G3) 5       D4         72       (A2)       (G1) 3       D0         26       (J7)       (SEE NOTE 3)       (G1) 3       D0         73       (B3)       (SEE NOTE 3)       (E1) 83       D0 | DATA             |
| DMA<br>SIGNALS      | DMAR<br>DMAG<br>DMAGO<br>DMAGO<br>DMACK<br>BURST<br>TSCTL                             | 56 (A10) (SEE NOTE 2)       (F2) 81 - D10         57 (A9)       (D1) 80 - D11         67 (B5)       (D2) 79 - D12         58 (B8) (SEE NOTE 2)       (C1) 78 - D13         74 (A1)       (B1) 77 - D14         55 (B9)       (C2) 76 - D15                                                                                                                                                                               |                  |
|                     |                                                                                       | 61 (B7)       (L6) 23       VDD         60 (C7)       (F9) 43       VDD         62 (A7)       (C6) 64       VDD         66 (A5)       (E3) 84       VDD                                                                                                                                                                                                                                                                  | POWER            |
| CONTROL<br>SIGNALS  | BCRTSEL                                                                               | 11 (L1) (SEE NOTE 1)       (F3) 1      V_SS         12 (K2) (SEE NOTE 1)       (J6) 22      V_SS         10 (J2)       (F10) 42      V_SS         24 (L7) (SEE NOTE 1)       (B6) 63      V_SS                                                                                                                                                                                                                           | GROUND           |
|                     | RWR       MEMCSI       MEMCSO                                                         | 52 (C10)       (J5) 21       CLK         59 (A8)       (C5) 65       MCLK         54 (B10)       (A3) 71       MCLK                                                                                                                                                                                                                                                                                                      | CLOCK            |


NOTES:


- 1. Pin internally pulled up.
- 2. Pin at high impedance when not asserted.

- Bidirectional pin.
   <u>Case outline X lead identification in parenthesis, cases Y and Z are not in parenthesis.</u>
   MEMWIN is an internal test pin only and should be considered a floating pin and not for use.

FIGURE 2. Functional block diagram - Continued.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-88628 |
|----------------------------------|------------------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |                  | E              | 13         |





|                                                                                                                                                                                                                                                                                                                                   |                                     | T                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open                                                                                                                                                                                                                                                                                                                              | $V_{DD}$ = 5 V ±0.5 V               | Ground                                                                                                                                                                                                                                 |
| 13 (K3), 14 (L2), 17 (L4), 18 (K6),                                                                                                                                                                                                                                                                                               | 10 (J2), 11 (L1), 12 (K2), 23 (L6), | 1 (F3), 2 (F1), 3 (G1), 4 (G2)                                                                                                                                                                                                         |
| 25 (K7), 26 (J7), 27 (L8), 38 (H11),                                                                                                                                                                                                                                                                                              | 24 (L7), 28 (K8), 43 (F9), 57 (A9), | 5 (G3), 6 (H1), 7 (H2), 8 (J1),                                                                                                                                                                                                        |
| 39 (G9), 40 (G10), 41 (G11), 44 (E9),<br>45 (E11), 46 (E10), 47 (F11), 48 (D11),<br>49 (D10), 50 (C11), 51 (B11), 52 (C10),<br>53 (A11), 54 (B10), 55 (B9), 56 (A10),<br>58 (B8), 67 (B5), 68 (A6), 69 (A4),<br>70 (B4), 71 (A3), 73 (B3), 74 (A1),<br>75 (B2), 76 (C2), 77 (B1), 78 (C1),<br>79 (D2), 80 (D1), 81 (F2), 82 (E2), | 59 (A8), 61 (B7), 64 (C6), 84 (E3)  | 9 (K1), 15 (L3), 16 (K4), 19 (K5), 20<br>(L5), 21 (J5), 22 (J6), 29 (L9), 30<br>(L10), 31 (K9), 32 (L11),<br>33 (K10), 34 (J10), 35 (K11),<br>36 (J11), 37 (H10), 42 (F10),<br>60 (C7), 62 (A7), 63 (B6), 65 (C5),<br>66 (A5), 72 (A2) |
| 83 (E1)                                                                                                                                                                                                                                                                                                                           |                                     |                                                                                                                                                                                                                                        |

NOTE: Pin grid array pin identification is in parenthesis. Flat pack pin number is not in parenthesis.

FIGURE 4. Radiation exposure circuit.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br>A |                | 5962-88628 |
|----------------------------------|-----------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |           | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |           | E              | 16         |

### 4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

### 4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
  - (1) Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015.
  - (2)  $T_A = +125^{\circ}C$ , minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.

### 4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

### 4.4.1 Group A inspection.

- a. Tests shall be as specified in table IIA herein.
- b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the functionality of the device. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.6 herein).
- c. Subgroup 4 (C<sub>IN</sub>, C<sub>OUT</sub>, and C<sub>I/O</sub>) shall be measured only for the initial test and after process or design changes which may affect capacitance. One pin of each input/output driver (buffer) type shall be tested on each sample device.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628  |
|-------------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET<br>17 |

| Test requirements                                    | Subgroups<br>(in accordance with<br>MIL-STD-883,<br>method 5005, table I) | Subgro<br>(in accorda<br>MIL-PRF-385: | ince with                      |
|------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|--------------------------------|
|                                                      | Device                                                                    | Device                                | Device                         |
|                                                      | class M                                                                   | class Q                               | class V                        |
| Interim electrical                                   |                                                                           |                                       |                                |
| parameters (see 4.2)                                 |                                                                           |                                       |                                |
| Final electrical                                     | <u>1</u> / 1, 2, 3, 7, 8,                                                 | <u>1</u> / 1, 2, 3, 7, 8,             | <u>2</u> / <u>3</u> / 1, 2, 3, |
| parameters (see 4.2)                                 | 9, 10, 11                                                                 | 9, 10, 11                             | 7, 8, 9, 10, 11                |
| Group A test                                         | 1, 2, 3, 4, 7, 8,                                                         | 1, 2, 3, 4, 7, 8,                     | 1, 2, 3, 4, 7, 8,              |
| requirements (see 4.4)                               | 9, 10, 11                                                                 | 9, 10, 11                             | 9, 10, 11                      |
| Group C end-point electrical<br>parameters (see 4.4) | 1, 2, 7, 8A                                                               | 1, 2, 7, 8A                           | <u>3</u> / 1, 2, 7, 8A         |
| Group D end-point electrical<br>parameters (see 4.4) | 1, 2, 7, 8A                                                               | 1, 2, 7, 8A                           | 1, 2, 7, 8A                    |
| Group E end-point electrical<br>parameters (see 4.4) | 1, 7, 9                                                                   | 1, 7, 9                               | 1, 7, 9                        |

TABLE IIA. Electrical test requirements.

1/ PDA applies to subgroup 1.

2/ PDA applies to subgroups 1 and 7.

3/ Delta limits as specified in table IIB herein shall be required when specified and the Delta values shall be completed with reference to the zero hour electrical parameter.

### TABLE IIB. Delta limits.

| Parameter        | Condition           | Limits                                                           |
|------------------|---------------------|------------------------------------------------------------------|
| I <sub>DDQ</sub> | $T_A = 25^{\circ}C$ | $\pm 10\%$ of measured value or 35 $\mu$ A, whichever is greater |

NOTE: If device is tested at or below 35 µA no deltas are required. Delta's are performed at room temperature.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
- b.  $T_A = +125^{\circ}C$ , minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br>A |                | 5962-88628 |
|----------------------------------|-----------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |           | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |           | E              | 18         |

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table IIA herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at T<sub>A</sub> = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A, and as specified herein.

4.4.4.1.1 <u>Accelerated annealing test</u>. Accelerated annealing tests shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at  $25^{\circ}C \pm 5^{\circ}C$ . Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Neutron testing</u>. When required by the customer, Neutron testing shall be performed in accordance with method 1017 of MIL-STD-883 and herein. All device classes must meet the post irradiation end-point electrical parameter limits as defined inn table IA, for the subgroups specified in table IIA herein at  $T_A = +25^{\circ}C \pm 5^{\circ}C$  after an exposure of 2 x 10<sup>12</sup> neutrons/cm<sup>2</sup> (minimum).

4.4.4.3 <u>Dose rated induced latchup testing</u>. When required by the customer, dose rate induced latchup testing shall be performed in accordance with method 1020 of MIL-STD-883 and as specified herein. Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may affect the RHA capability of the process.

4.4.4.4 Dose rate upset testing. When required by the customer, dose rate upset testing shall be performed in accordance with method 1021 of MIL-STD-883 and herein.

- a. Transient dose rate upset testing for class M devices shall be performed at initial qualification and after any design or process changes which may affect the RHA performance of the devices. Test 10 devices with zero defects unless otherwise specified.
- b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535. Device parametric parameters that influence upset immunity shall be monitored at the wafer level in accordance with the wafer level hardness assurance plan and MIL-PRF-38535.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628  |
|-------------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET<br>19 |

4.4.4.5 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be performed on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. Test four devices with zero failures. ASTM F1192 may be used as a guideline when performing SEP testing. The test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and  $60^{\circ}$  to the normal, inclusive (i.e.  $0^{\circ} < angle < 60^{\circ}$ ). No shadowing of the ion beam due to fixturing or package related affects is allowed.
- b. The fluence shall be  $\geq 100$  errors or  $\geq 10^7$  ions/cm<sup>2</sup>.
- c. The flux shall be between 10<sup>2</sup> and 10<sup>5</sup> ions/cm<sup>2</sup>/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be  $\geq 20$  microns in silicon.
- e. The test temperature shall be +25°C and the maximum rated operating temperature  $\pm 10$ °C.
- f. Bias conditions shall be  $V_{CC}$  = 4.5 V dc for the upset measurements and  $V_{CC}$  = 5.5 V dc for the latchup measurements.
- g. For SEP test limits, see table IB herein.

### 5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

### 6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, or as follows:

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628         |
|-------------------------------------------------------------|-----------|---------------------|--------------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET<br><b>20</b> |

| Name Pin number | Imber      | Туре А | Active | Description |                                |
|-----------------|------------|--------|--------|-------------|--------------------------------|
|                 | Cases Y, Z | Case X |        |             |                                |
| A0              | 34         | J10    | I/O    |             | Bit 0 (LSB) of the address bus |
| A1              | 35         | K11    | I/O    |             | Bit 1 of the address bus       |
| A2              | 36         | J11    | I/O    |             | Bit 2 of the address bus       |
| A3              | 37         | H10    | I/O    |             | Bit 3 of the address bus       |
| A4              | 38         | H11    | OUT    |             | Bit 4 of the address bus       |
| A5              | 39         | G9     | OUT    |             | Bit 5 of the address bus       |
| A6              | 40         | G10    | OUT    |             | Bit 6 of the address bus       |
| A7              | 41         | G11    | OUT    |             | Bit 7 of the address bus       |
| A8              | 44         | E9     | OUT    |             | Bit 8 of the address bus       |
| A9              | 45         | E11    | OUT    |             | Bit 9 of the address bus       |
| A10             | 46         | E10    | OUT    |             | Bit 10 of the address bus      |
| A11             | 47         | F11    | OUT    |             | Bit 11 of the address bus      |
| A12             | 48         | D11    | OUT    |             | Bit 12 of the address bus      |
| A13             | 49         | D10    | OUT    |             | Bit 13 of the address bus      |
| A14             | 50         | C11    | OUT    |             | Bit 14 of the address bus      |
| A15             | 51         | B11    | OUT    |             | Bit 15 of the address bus      |
| D0              | 9          | K1     | I/O    |             | Bit 0 (LSB) of the data bus    |
| D1              | 8          | J1     | I/O    |             | Bit 1 of the data bus          |
| D2              | 7          | H2     | I/O    |             | Bit 2 of the data bus          |
| D3              | 6          | H1     | I/O    |             | Bit 3 of the data bus          |
| D4              | 5          | G3     | I/O    |             | Bit 4 of the data bus          |
| D5              | 4          | G2     | I/O    |             | Bit 5 of the data bus          |
| D6              | 3          | G1     | I/O    |             | Bit 6 of the data bus          |
| D7              | 2          | F1     | I/O    |             | Bit 7 of the data bus          |
| D8              | 83         | E1     | I/O    |             | Bit 8 of the data bus          |
| D9              | 82         | E2     | I/O    |             | Bit 9 of the data bus          |
| D10             | 81         | F2     | I/O    |             | Bit 10 of the data bus         |
| D11             | 80         | D1     | I/O    |             | Bit 11 of the data bus         |
| D12             | 79         | D2     | I/O    |             | Bit 12 of the data bus         |
| D13             | 78         | C1     | I/O    |             | Bit 13 of the data bus         |
| D14             | 77         | B1     | I/O    |             | Bit 14 of the data bus         |
| D15             | 76         | C2     | I/O    |             | Bit 15 of the data bus         |
|                 | 70         | 02     | 1/0    |             |                                |
|                 |            |        |        |             |                                |

Α

| Name Pin number | Туре       | Type Active | Description |    |                             |  |
|-----------------|------------|-------------|-------------|----|-----------------------------|--|
|                 | Cases Y, Z | Case X      |             |    |                             |  |
| DMAR            | 56         | A10         | OUT         | ZL | DMA request                 |  |
| DMAG            | 57         | A9          | IN          | AL | DMA grant                   |  |
| DMAGO           | 67         | B5          | OUT         | AL | DMA grant out               |  |
| DMACK           | 58         | B8          | OUT         | ZL | DMA acknowledge             |  |
| CS              | 62         | A7          | IN          | AL | Chip select                 |  |
| RD              | 61         | B7          | IN          | AL | Read                        |  |
| WR              | 60         | C7          | IN          | AL | Write                       |  |
| MEMCSO          | 54         | B10         | OUT         | AL | Memory chip select out      |  |
| MEMCSI          | 59         | A8          | IN          | AL | Memory chip select in       |  |
| RRD             | 53         | A11         | OUT         | AL | RAM read                    |  |
| RWR             | 52         | C10         | OUT         | AL | RAM write                   |  |
| TSCTL           | 55         | B9          | OUT         | AL | Three state control         |  |
| AEN             | 66         | A5          | IN          | AH | Address enable              |  |
| STDINTL         | 68         | A6          | OUT         | ZL | Standard interrupt level    |  |
| STDINTP         | 69         | A4          | OUT         | AL | Standard interrupt pulse    |  |
| HPINT           | 70         | B4          | OUT         | ZL | High priority interrupt     |  |
| CLK             | 21         | J5          | IN          |    | Clock                       |  |
| MCLK            | 65         | C5          | IN          |    | Memory clock                |  |
| MCLKD2          | 71         | A3          | OUT         |    | Memory clock divided by two |  |
| TAZ             | 13         | К3          | OUT         |    | Transmit (channel) A Z      |  |
| TAO             | 14         | L2          | OUT         |    | Transmit (channel) A O      |  |
| TBZ             | 17         | L4          | OUT         |    | Transmit (channel) B Z      |  |
| ТВО             | 18         | K6          | OUT         |    | Transmit (channel) B O      |  |
| RAZ             | 15         | L3          | IN          |    | Receive (channel) A Z       |  |
| RAO             | 16         | K4          | IN          |    | Receive (channel) A O       |  |
| RBZ             | 19         | K5          | IN          |    | Receive (channel) B Z       |  |
| RBO             | 20         | L5          | IN          |    | Receive (channel) B O       |  |
| TIMERON         | 25         | K7          | OUT         | AL | (RT) timer on               |  |
| CHA/B           | 26         | J7          | OUT         |    | Channel A/B                 |  |
| MRST            | 10         | J2          | IN          | AL | Master reset                |  |
| COMSTR          | 27         | L8          | OUT         | AL | (RT) command strobe         |  |
| BCRTSEL         | 11         | L1          | IN          |    | BC/RT select                |  |
|                 |            |             |             |    |                             |  |
|                 |            |             |             |    |                             |  |
|                 |            |             |             |    |                             |  |
|                 |            |             |             |    |                             |  |

Α

| Name            | ame Pin number |        | Туре | Active | Description                         |  |
|-----------------|----------------|--------|------|--------|-------------------------------------|--|
|                 | Cases Y, Z     | Case X | ]    |        |                                     |  |
| RTA0            | 28             | K8     | IN   |        | Remote terminal address bit 0 (LSB) |  |
| RTA1            | 29             | L9     | IN   |        | Remote terminal address bit 1       |  |
| RTA2            | 30             | L10    | IN   |        | Remote terminal address bit 2       |  |
| RTA3            | 31             | K9     | IN   |        | Remote terminal address bit 3       |  |
| RTA4            | 32             | L11    | IN   |        | Remote terminal address bit 4       |  |
| RTPTY           | 33             | K10    | IN   | AH     | Remote terminal (address) parity    |  |
| SSYSF           | 72             | A2     | IN   | AH     | Subsystem fail                      |  |
| BCRTF           | 75             | B2     | OUT  | AH     | BCRT fail                           |  |
| BURST           | 74             | A1     | OUT  | AL     | Burst (DMA cycle)                   |  |
| MEMWIN          | 73             | B3     | OUT  |        | Memory (access) window              |  |
| LOCK            | 12             | K2     | IN   | AH     | Lock                                |  |
| EXTOVR          | 24             | L7     | IN   | AL     | External override                   |  |
| $V_{DD}$        | 23             | L6     | PWR  |        | +5 V                                |  |
| $V_{DD}$        | 43             | F9     | PWR  |        | +5 V                                |  |
| $V_{DD}$        | 64             | C6     | PWR  |        | +5 V                                |  |
| $V_{DD}$        | 84             | E3     | PWR  |        | +5 V                                |  |
| V <sub>SS</sub> | 1              | F3     | GND  |        | Ground                              |  |
| V <sub>SS</sub> | 22             | J6     | GND  |        | Ground                              |  |
| V <sub>SS</sub> | 42             | F10    | GND  |        | Ground                              |  |
| V <sub>SS</sub> | 63             | B6     | GND  |        | Ground                              |  |

# NOTES:

1. MEMWIN is an internal test pin only and should be considered a floating pin and not for use.

2. Abbreviations:

AL = Active low AH = Active high ZL = Active low – inactive state is high impedance.
Address and data busses are all active high and in the high impedance state when idle.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br>A |                     | 5962-88628 |
|-------------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43218-3990 |           | REVISION LEVEL<br>E | SHEET 23   |

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

6.7 <u>Additional information</u>. A copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Number of upsets (SEP).
- d. Number of transients (SEP).
- e. Occurrence of latchup (SEP).

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br>A |                | 5962-88628 |
|----------------------------------|-----------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |           | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |           | E              | <b>24</b>  |

#### STANDARD MICROCIRCUIT DRAWING BULLETIN

#### DATE: 07-06-11

Approved sources of supply for SMD 5962-88628 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at <a href="http://www.dscc.dla.mil/Programs/Smcr/">http://www.dscc.dla.mil/Programs/Smcr/</a>.

| Standard<br>microcircuit drawing<br>PIN <u>1</u> / | Vendor<br>CAGE<br>number | Vendor<br>similar<br>PIN <u>2</u> / |
|----------------------------------------------------|--------------------------|-------------------------------------|
| 5962-8862801XA                                     | 65342                    | UT1553 BCRTGA                       |
| 5962-8862801XC                                     | 65342                    | UT1553 BCRTGC                       |
| 5962-8862801YA                                     | 65342                    | UT1553 BCRTWA                       |
| 5962-8862801YC                                     | 65342                    | UT1553 BCRTWC                       |
| 5962-8862801ZA                                     | 65342                    | UT1553 BCRTAA                       |
| 5962-8862801ZC                                     | 65342                    | UT1553 BCRTAC                       |
| 5962-8862801TA                                     | 65342                    | UT1553 BCRTFA                       |
| 5962-8862801TC                                     | 65342                    | UT1553 BCRTFC                       |
| 5962H8862801XA                                     | 65342                    | UT1553 BCRTGAH                      |
| 5962H8862801XC                                     | 65342                    | UT1553 BCRTGCH                      |
| 5962H8862801YA                                     | 65342                    | UT1553 BCRTWAH                      |
| 5962H8862801YC                                     | 65342                    | UT1553 BCRTWCH                      |
| 5962H8862801ZA                                     | 65342                    | UT1553 BCRTAAH                      |
| 5962H8862801ZC                                     | 65342                    | UT1553 BCRTACH                      |
| 5962H8862801TA                                     | 65342                    | UT1553 BCRTFAH                      |
| 5962H8862801TC                                     | 65342                    | UT1553 BCRTFCH                      |
| 5962H8862801VXA                                    | 65342                    | UT1553 BCRTVGAH                     |
| 5962H8862801VXC                                    | 65342                    | UT1553 BCRTVGCH                     |
| 5962H8862801VYA                                    | 65342                    | UT1553 BCRTVWAH                     |
| 5962H8862801VYC                                    | 65342                    | UT1553 BCRTVWCH                     |
| 5962H8862801VZA                                    | 65342                    | UT1553 BCRTVAAH                     |
| 5962H8862801VZC                                    | 65342                    | UT1553 BCRTVACH                     |
| 5962H8862801VTA                                    | 65342                    | UT1553 BCRTVFAH                     |
| 5962H8862801VTC                                    | 65342                    | UT1553 BCRTVFCH                     |

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

65342

Aeroflex Colorado Springs, Inc. 4350 Centennial Blvd. Colorado Springs, CO 80907-3486

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.