
								F	REVISI	ONS										
LTR	DESCRIPTION									DATE (YR-MO-DA)				APPF	ROVED)				
А	Changes in accordance with NOR 5962-R366-97											97-06-25 Mo			onica L	Poelk	king			
В	Char	Changes in accordance with NOR 5962-R112-98														Monica L. Poelking				
С	Update boilerplate to MIL-PRF-38535 requirements CFS									05-1	0-17		ר	Thomas	s M. He	ess				
REV																				
SHEET																				
SHEET REV	C	C	C	C	C	C	C	C	C	С	C	C	C	C	C	C	C	C	C	C
SHEET REV SHEET	C 15	C 16	C 17	18	19	C 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
SHEET REV					19 ′															
SHEET REV SHEET REV STATUS				18 REV SHE	19 , ET PARED	20	21 C 1	22 C 2	23 C	24 C	25 C 5	26 C 6	27 C 7	28 C 8	29 C 9	30 C	31 C 11	32 C 12	33 C 13	34 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	15 NDAF	16 RD CUIT		18 REV SHE PRE	19 FET PAREL T CKED	20 D homas	21 C 1 M. He	22 C 2	23 C	24 C	25 C 5	26 C 6 FEN	27 C 7 SE SI	28 C 8 UPPL	29 C 9 Y CE , OHI0	30 C 10	31 C 11 C 11 S COL 218-3	32 C 12	33 C 13	34 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN FOR US	15 NDAF OCIRC AWIN	16 RD CUIT G VAILAI	17	18 REV SHE PREI	19 FET PAREE T CKED T ROVEE	20) homas BY homas	21 C 1 M. Her	22 C 2 SS	23 C	24 C 4	25 C 5	26 C 6 EFEN CC	27 C 7 SE SI DLUM http	28 C 8 UPPL BUS, p://ww	29 C 9 Y CE , OHI0 /w.ds	30 C 10 NTEF O 432	31 C 11 C C 218-33 a.mil	32 C 12	33 C 13	34 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN	15 NDAF DCIRC AWIN NG IS A SE BY NCIES (16 RD CUIT G VAILAI ALL ITS DF THE	17 BLE	18 REV SHE PREI	19 ZET PAREE T CKED T ROVEE	20 homas BY homas D BY onica L	21 C 1 M. Hes M. Hes	22 C 2 ss ss	23 C	24 C 4	25 C 5 DI	26 C 6 EFEN CC	27 C 7 SE SI DLUM http	28 C 8 UPPL BUS, o://ww	29 C 9 Y CE , OHI0 /w.ds	30 C 10 NTEF D 432 cc.dl	31 C 11 218-39 a.mil	32 C 12 UMB 990	33 C 13 US	34 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DRAWIN FOR US DEPAR AND AGEN DEPARTMEN	15 NDAF DCIRC AWIN NG IS A SE BY NCIES (16 RD CUIT G VAILAI ALL ITS DF THE DEFEN	17 BLE	18 REV SHE PREI CHE	19 FET PAREL T CKED T ROVEL MO	20 homas BY homas D BY onica L	21 C 1 M. Her M. Her . Poelk DVAL D	22 C 2 ss ss	23 C	24 C 4 MIC MIC	25 C 5 DI	26 C 6 EFEN CC	27 C 7 SE SI DLUM http	28 C 8 UPPL BUS, p://ww DIGIT OR, I	29 C 9 Y CE , OHI0 /w.ds	30 C 10 NTEF D 432 cc.dl	31 C 11 218-39 a.mil	32 C 12 J J J J J J J J J J J J J J J J J J	33 C 13 US	34 C

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	68040-25	32-bit microprocessor
02	68020-33	32-bit microprocessor

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
М	Vendor self-certification to the requirements for MIL-STD-883 compliant, non- JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A
Q or V	Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Х	CMGA10-179	179	Pin grid array
Y	See figure 1	196	Leaded chip carrier with non-conductive tie bar
Z	See figure 1	196	Ceramic leaded chip carrier, gull-wing lead

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 2

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _{CC}) Input voltage range (V _{IN})	
Storage temperature range (T _{STG})	
Maximum power dissipation (P_D) :	
Large buffers enabled	7.7 W
Small buffers enabled	6.3 W
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction-to-case (θ_{JC}) :	
Case X	+1.0°C/W
Case Y	+1.0°C/W
Case Z	+1.0°C/W

1.4 Recommended operating conditions.

Supply voltage range (V_{CC}) Logic high input voltage range (V_{IH}) Logic low input voltage range (V_{IL}) Minimum high level output voltage (V_{OH}) Maximum low level output voltage (V_{OL})	+2.0 V dc to V _{cc} + 0.3 V dc GND - 0.3 V dc to 0.8 V dc 2.4 V dc
Frequency of operation (f _{OP}): Device 01	25 MU-
Device 01	
Case operating temperature range (T _c)	55°C to T_J max
Maximum operating junction temperature (T _J)	—
Minimum operating case temperature (T _c)	55°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	 Test Method Standard Microcircuits.
MIL-STD-1835	- Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103	-	List of Standard Microcircuit Drawings.
MIL-HDBK-780	-	Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ This device is not tested at T_C = +125°C. Testing is performed by setting the junction temperature T_J = +125°C and allowing the case and ambient temperatures to rise and fall as necessary so as not to exceed the maximum junction temperature.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	3

2.2 <u>Non-Government publications</u>. The following documents form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Standard 1149.1 - IEEE Standard Test Access Port and Boundary Scan Architecture.

(Copies of these documents are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854-4150.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Block diagram</u>. The block diagram shall be as specified on figure 3.

3.2.4 <u>Switching test circuit and waveforms</u>. The switching test circuit and waveforms shall be as specified on figure 4.

3.2.5 Boundary scan instruction codes. The boundary scan instruction codes shall be as specified on figure 5.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	4

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-PRF-38535, appendix A).

3.11 <u>IEEE 1149.1 compliance</u>. All device types shall be compliant to IEEE 1149.1.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 5
DOCO FORM 2024			

Test	Symbol	-55°C V _{CC} min	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Group A subgroups	Device type			
						Min	Max	
Input high voltage	V _{IH}			1,2,3	All	2.0	V_{CC}	V
Input low voltage	V _{IL}			1,2,3	All	GND	0.8	V
Undershoot voltage	VU			1,2,3	All		-0.8	V
Supply current	I _{CC}	$V_{CC} = V_{CC}$ max <u>4</u> /	100% large buffer 100% small buffer	1,2,3	All		1.47 1.20	A
Input leakage current, AVEC, BCLK, BG, CDIS, IPLn, MDIS, PCLK, RSTI, SCn, TBI, TCI, TCK, TEA	I _{IN}	V _{IN} = 2.4 V/0 V _{CC} = V _{CC} m		1,2,3	All	-20	20	μA
High impedance (off-state) leakage current, An, BB, CIOUT, Dn, LOCK, LOCKE, R/W, SIZn, TA, TDO, TIP, TLNn, TMn, TS, TTn, UPAn	I _{TSI}	V _{IN} = 2.4 V/0 V _{CC} = V _{CC} m		1,2,3	All	-20	20	μA
Signal low input current, TMS, TDI, TRST	IIL	$V_{IL} = 0.8 V$ $V_{CC} = V_{CC} m$	ax	1,2,3	All	-1.1	-0.18	mA
Signal high input current, TMS, TDI, TRST	I _{IH}	$V_{IH} = 2.0 V$ $V_{CC} = V_{CC} m$	ax	1,2,3	All	-0.94	-0.16	mA
Output high voltage	V _{OH}	Small buffers	$V_{CC} = V_{CC} \min$	1,2,3	All	2.4		V
Output low voltage	V _{OL}	Large buffers I _{OL} = 35 mA, Small buffers	s, V _{CC} = V _{CC} min	1,2,3	All		0.5 0.5	V
Input capacitance	C _{IN}	$V_{IN} = 0 V, f = T_A = +25 C, s$	= 1.0 MHz,	4	All		25	pF
Functional testing			in, see 4.4.1b	7,8	All			
Frequency of operation	f _{MAX}	$V_{CC} = V_{CC} m$	in	9,10,11	01 02	20 20	25 33	MH

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	6

Test	Symbol	$\begin{array}{c c} Conditions & \underline{1}/\underline{2}/\underline{3}/\\ -55^\circ C \leq \ T_C & \leq T_J \ max\\ V_{CC} \ min & \leq V_{CC} \leq V_{CC} \ max\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device type	Lin	nits	Uni
					Min	Max	<u> </u>
Clock timing							
PCLK cycle time	1	See figure 4.	9,10,11	01	20	25	ns
		$V_{CC} = V_{CC} min$		02	15	25	
PCLK rise time <u>5</u> /	2		9,10,11	01, 02		1.7	ns
PCLK fall time <u>5</u> /	3		9,10,11	01, 02		1.6	ns
PCLK duty cycle (measured from	4		9,10,11	01	47.5	52.5	%
1.5 V to 1.5 V <u>5</u> /				02	46.67	53.33	
PCLK pulse width high (measured from 1.5 V	4a		9,10,11	01	9.5	10.5	ns
to 1.5 V for 25 MHz) <u>5</u> /	·			02	7	8	
PCLK pulse width low (measured from 1.5 V	4b		9,10,11	01	9.5	10.5	ns
to 1.5 V for 25 MHz) <u>5</u> /	·			02	7	8	
BCLK cycle time	5		9,10,11	01	40	50	ns
				02	30	60	
BCLK rise and fall time	6, 7		9,10,11	01		4.0	ns
				02		3.0	
BCLK duty cycle (measured from 1.5 V to 1.5 V) <u>5</u> /	8		9,10,11	01, 02	40	60	%
BCLK pulse width high	8a		9,10,11	01	16	24	ns
(measured from 1.5 V to 1.5 V) <u>5</u> /	·			02	12	18	
BCLK pulse width low (measured from 1.5 V	8b		9,10,11	01	16	24	ns
to 1.5 V) <u>5</u> /				02	12	18	
PCLK, BCLK frequency stability <u>5</u> /	9		9,10,11	01, 02		1000	ррі
PCLK to BCLK skew	10		9,10,11	01		9.0	ns
				02	I	n/a	l

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	7

Test	Symbol	$-55^{\circ}C \le 7$ V _{CC} min ≤ 7	ns <u>1/ 2/ 3/</u> $T_{C} \le T_{J} \max$ $V_{CC} \le V_{CC} \max$ prwise specified		Group A subgroups	Device type	Lin	nits	Unit
_			•				Min	Max	
O (1) (1) (1)									
Output timing BCLK to address	11	See figure 4	Large buffer	7/	9,10,11	01	9.0	21	ns
CIOUT, LOCK,		$V_{CC} = V_{CC} \min$	5	_	, ,	02	6.5	18	
LOCKE, R/W, SIZn,									
TLN, TMn, TTn,			Small buffer	<u>7</u> /		01	9.0	30	
and UPAn valid <u>6</u> /		-				02	6.5	25	
BCLK to output	12		Large buffer	<u>7</u> /	9,10,11	01	9.0		ns
invalid (output hold)					-	02	6.5		
			Small buffer	<u>7</u> /		01	9.0		
		-				02	6.5		
TCLK to TS valid	13		Large buffer	<u>7</u> /	9,10,11	01	9.0	21	ns
					-	02	6.5	18	
			Small buffer	<u>7</u> /		01	9.0	30	
						02	6.5	25	
BCLK to TIP valid	14		Large buffer	<u>7</u> /	9,10,11	01	9.0		
			-		-	02	6.5	18	
			Small buffer	<u>7</u> /		01	9.0	30	
						02	6.5	25	
BCLK to data-out	18		Large buffer	<u>7</u> /	9,10,11	01	9.0	23	ns
valid <u>8</u> /					-	02	6.5	20	
			Small buffer	<u>7</u> /		01	9.0	32	
		•				02	6.5	27	
BCLK to data-out	19		Large buffer	<u>7</u> /	9,10,11	01	9.0		ns
invalid (output hold)				-1	-	02	6.5		
<u>8</u> /			Small buffer	<u>7</u> /		01	9.0		
		1		- 1		02	6.5		
BCLK to output low	20		Large buffer	<u>7</u> /	9,10,11	01	9.0		ns
impedance <u>6</u> / <u>8</u> /						02	6.5		
			Small buffer	<u>7</u> /		01	9.0		
		-				02	6.5		
BCLK to data-out	21		Large buffer	<u>//</u>	9,10,11	01	9.0	20	ns
high impedance <u>9</u> /			0 11 11	7/	-	02	6.5	17	
			Small buffer	<u>//</u>		01 02	9.0 6.5	20 17	
See footnotes at end of tab	ble.	L	1			02	0.5		
ST/	ANDARD		S	BIZE A				5962-	

REVISION LEVEL

С

SHEET

8

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

Test	Symbol	Conditior -55°C ≤ V _{CC} min ≤ unless othe	$T_{C} \leq T_{J}$ $V_{CC} \leq V_{C}$	max _{CC} max	:	Group A subgroups	Device type	Lir	nits	Unit
								Min	Max	
Output timing - Continue	he									
BCLK to multiplexed	26	See figure 4	Large	buffer 7	/	9,10,11	01	19	31	ns
address valid <u>6</u> /		$V_{CC} = V_{CC} \min$		_			02	14	26	
			Small	buffer 7	/		01	19	40	
							02	14	33	
BCLK to multiplexed	27		Large	buffer 7	/	9,10,11	01	19		ns
address driven	<u>6/ 9/</u>						02	14		
			Small	buffer 7	′		01	19		
							02	14		
BCLK to multiplexed	28		Large	buffer 7	/	9,10,11	01	9.0	18	ns
address high							02	6.5	15	
impedance <u>6</u> / <u>8</u> / <u>9</u> /			Small	buffer 7	/		01	9.0	18	
							02	6.5	15	
BCLK to multiplexed	29		Large	buffer 7	/	9,10,11	01	19	33	ns
data driven <u>6</u> / <u>9</u> /			0				02	14	20	
			Small	buffer 7	/		01	19		33
							02	14	20	
BCLK to multiplexed	30		Large	buffer 7	/	9,10,11	01	19	33	ns
data valid <u>8</u> /			, i i i i i i i i i i i i i i i i i i i				02	14	28	
			Small	buffer 7	/		01	19	42	
							02	14	35	
BCLK to address CIOUT, LOCK,	38	See figure 4. $V_{CC} = V_{CC} min$	Large	buffer <u>7</u>	/	9,10,11	01	9.0	18	ns
LOCKE, R/W, SIZn,							02	6.5	15	
TS, TLNn, TMn,			Small	buffer 7	/		01	9.0	18	
TTn, and UPAn high impedance <u>6</u> /							02	6.5	15	
BCLK to BB, TA, and	39		Large	buffer 7	/	9,10,11	01	19	28	ns
TIP high impedance							02	14	23	
			Small	buffer <u>7</u>	/		01	19	28	
		ļ					02	14	23	
BCLK to BR and BB	40		Large	buffer 7	/	9,10,11	01	9.0	21	ns
valid							02	6.5	18	
			Small	buffer 7	/		01	9.0	30	
							02	6.5	25	
ee footnotes at end of tak	ble.									
ST/ MICROCIR	ANDARD CUIT DR	AWING		size A	:				5962-	9314
DEFENSE SUPPL COLUMBUS						REVISIC	N LEVEL C		SHEET	9

		1			T	1			
Test	Symbol	-55°C ≤ ⁻	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Group A subgroups	Device type	Lir	mits	Unit
		unless othe	rwise specified				Min	Max	
		I			1	I			
Output timing - Continue BCLK to MI valid	ed. 43	See figure 4.	Large buffer	7/	9,10,11	01	9.0	21	ns
DOLIVIO IMI Valia	-10	$V_{CC} = V_{CC} \min$	Large builer	<u></u>	5,10,11	02	6.5	18	110
			Small buffer	7/	-	01	9.0	30	
				<u></u>		02	6.5	25	
BCLK to TA valid	48		Large buffer	7/	9,10,11	01	9.0	21	ns
					0,10,11	02	6.5	18	
			Small buffer	7/		01	9.0	30	
						02	6.5	25	
BCLK to IPEND,	50	1	Large buffer	7/	9,10,11	01	9.0	21	ns
PSTn and RSTO valid					-,,.	02	6.5	18	
			Small buffer	7/		01	9.0	30	
						02	6.5	25	
Data-in valid to BCLK (setup)	15	See figure 4. V _{CC} = V _{CC} min			9,10,11	01 02	5.0 4.0		ns
BCLK to data-in invalid (Hold)	16				9,10,11	01,02	4.0		ns
BCLK to data-in high	17				9,10,11	01		49	ns
impedance (read followed by write)						02		36.5	
TA valid to BCLK (setup)	22a				9,10,11	01,02	10		ns
TEA valid to BCLK (setup)	22b				9,10,11	01,02	10		ns
TCI valid to BCLK (setup)	22c				9,10,11	01,02	10		ns
TBI valid to BCLK	22d				9,10,11	01	11		ns
(setup)						02	10		
BCLK to TA, TEA, TCI, and TBI invalid (hold)	23				9,10,11	01,02	2.0		ns
AVEC valid to BCLK (setup)	24				9,10,11	01,02	5.0		ns
BCLK to AVEC	25				9,10,11	01,02	2.0	7	ns
invalid (hold)									
	лс. 								
MICROCIR				IZE A				5962-	9314
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990					REVISIO	ON LEVEL C		SHEET 1	

	TABL	E I. Electrical performan	ce characteristics	<u>s</u> - Contir	nued.			
Test	Symbol	$\begin{array}{llllllllllllllllllllllllllllllllllll$	max su _{CC} max	Group A Ibgroups	Device type	Li	mits	Unit
						Min	Max	
Input timing - Continued		0		0 4 0 4 4	04.00	0.0		
DLE width high	31	See figure 4.		9,10,11	01,02	8.0		ns
Data-in valid to DLE (setup)	32	$V_{CC} = V_{CC}$ min		9,10,11	01,02	2.0		ns
DLE to data-in valid (hold)	33		(9,10,11	01,02	8.0		ns
BCLK to DLE hold	34		ę	9,10,11	01,02	3.0		ns
DLE high to BCLK	35		ç	9,10,11	01	16		ns
					02	12		
Data-in valid to BCLK (DLE mode setup)	36		Ş	9,10,11	01,02	5.0		ns
BCLK to data-in invalid (DLE mode hold)	37		Ş	9,10,11	01,02	4.0		ns
BB valid to BCLK (setup)	41a		Ş	9,10,11	01,02	7.0		ns
BG valid to BCLK	41b		(9,10,11	01	8.0		ns
(setup)	-			-, -,	02	7.0		
CDIS and MDIS valid to	41c		9	9,10,11	01	10		ns
BCLK (setup)					02	8		
IPLn valid to BCLK	41d		ę	9,10,11	01	4.0		ns
(setup)					02	3.0		
BCLK to BB, BG, CDIS, IPLn, and MDIS invalid (hold)	42		Ş	9,10,11	01,02	2.0		ns
Address valid to BCLK	44a		ę	9,10,11	01	8.0		ns
(setup)					02	7.0		
SIZn valid to BCLK	44b		ę	9,10,11	01	12		ns
(setup)					02	8		
TTn valid to BCLK	44c		ç	9,10,11	01	6.0		ns
(setup)					02	8.5		
R/W valid to BCLK	44d		Ş	9,10,11	01	6.0		ns
(setup)					02	5.0		
SCn valid to BCLK	44e		ę	9,10,11	01	10		ns
(setup)	<u> </u>				02	11		
See footnotes at end of tab	le.							
STA MICROCIR	NDARD	AWING	SIZE A				5962-	93143
DEFENSE SUPPL COLUMBUS,	Y CENTER	COLUMBUS		REVISIO	ON LEVEL C		SHEET 1	1

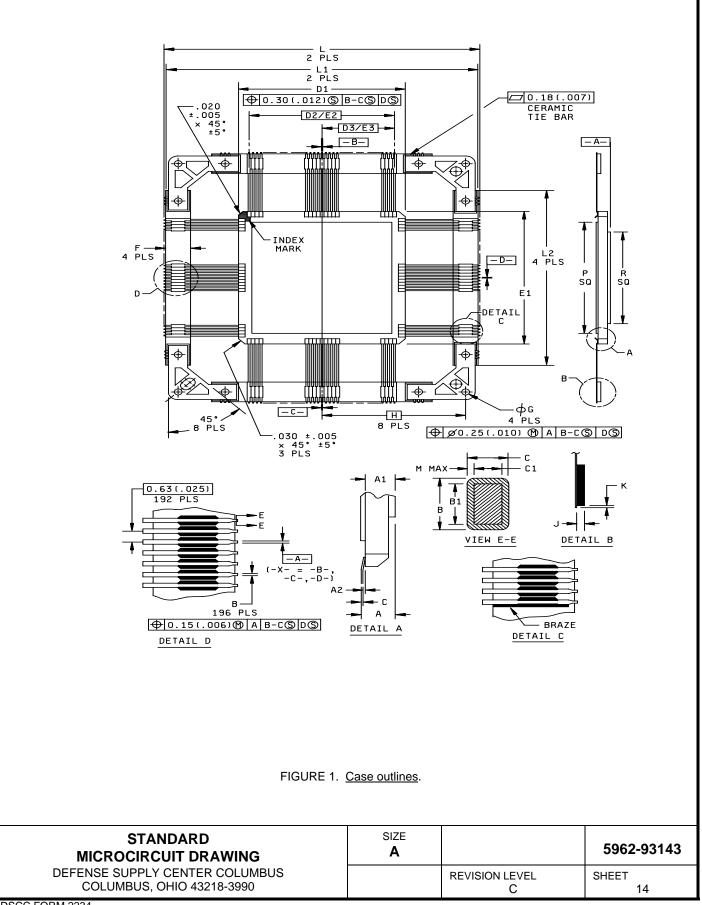
9,10,11 9,10,11 9,10,11 9,10,11	01,02 01 02 01,02 01,02	Min 2.0 5.0 9.0 2.0	Max	ns
9,10,11 9,10,11	01 02 01,02	5.0 9.0		
9,10,11 9,10,11	01 02 01,02	5.0 9.0		
9,10,11	02 01,02	9.0		ns
9,10,11	02 01,02	9.0		ns
9,10,11	02 01,02	9.0		1
		2.0		ĺ
9,10,11	01,02			ns
			9.0	ns
9,10,11	01	5.0		ns
5,10,11	01	4.0		113
9,10,11	01,02	2.0		ns
9,10,11	01,02	20		ns
9,10,11	01,02	2.0		ns
9,10,11	01,02	0	10	МН
9,10,11	01,02	100		ns
9,10,11	01,02	40		ns
9,10,11	01,02	0	10	ns
9,10,11	01,02	40		ns
9,10,11	01,02	100		ns
9,10,11	01,02	50		ns
	9,10,11 9,10,11 9,10,11 9,10,11 9,10,11 9,10,11 9,10,11	9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02 9,10,11 01,02	9,10,11 01,02 2.0 9,10,11 01,02 0 9,10,11 01,02 100 9,10,11 01,02 100 9,10,11 01,02 40 9,10,11 01,02 0 9,10,11 01,02 40 9,10,11 01,02 40 9,10,11 01,02 100	9,10,11 01,02 2.0 9,10,11 01,02 0 10 9,10,11 01,02 100 9,10,11 9,10,11 01,02 40 10 9,10,11 01,02 0 10 9,10,11 01,02 40 10 9,10,11 01,02 0 10 9,10,11 01,02 100 10 9,10,11 01,02 100 10

	TABLE I. Electrical performance characteristics - Continued.									
Test	Symbol	$\begin{array}{l l l l l l l l l l l l l l l l l l l $	Group A subgroups	Device type	Lin	nits	Unit			
					Min	Max				
JTAG timing - Continued		1		+	1	1	1			
Boundry scan input data hold time	7	$V_{CC} = V_{CC} min$	9,10,11	01,02	50		ns			
TCK to output data valid	8		9,10,11	01,02	0	50	ns			
TCK to output high impedance	9		9,10,11	01,02	0	50	ns			
TMS, TDI data setup time	10		9,10,11	01,02	20		ns			
TMS, TDI data hold time	11		9,10,11	01,02	5		ns			
TCK to TDO data valid	12		9,10,11	01,02	0	20	ns			
TCK to TDO high impedance	13		9,10,11	01,02	0	20	ns			

1/ All testing to be performed using worst-case test conditions unless otherwise specified.

- 2/ The following pins are active low: AVEC, BG, BS, BR, CDIS, DIQUT, IPEND, IPLO, IPL1, IPL2, LOCK, LOCKE, NDIS, MI, RSTO, RSTI, TA, TBI, TCI, TEA, TIP, TRST, TS, and W of R/W.
- 3/ Maximum operating junction temperature $(T_J) = +125^{\circ}C$. Minimum case operating temperature $(T_C) = -55^{\circ}C$. This device is not tested at $T_C = +125^{\circ}C$. Testing is performed by setting the junction temperature $T_J = +125^{\circ}C$ and allowing the case and ambient temperatures to rise and fall as necessary so as not to exceed the maximum junction temperature.
- 4/ Power dissipation may vary in between limits depending on the application.
- 5/ If not tested, shall be guaranteed to the limits specified in table I.

6/ Timing parameters 11, 20, and 38 for address bus output timing apply when normal bus operation is selected. Parameters 26, 27, and 28 should be used when the multiplexed bus mode of operation is enabled.


<u>7</u>/ Output timing is specified for a valid signal measured at the pin. Large buffer timing is specified driving a 50Ω transmission line with a length characterized by a 2.5 ns one way propagation delay, terminated through 50Ω to 2.5 V. Large buffer output impedance is 4-12Ω, resulting in incident wave switching for this environment. All large buffer outputs must be terminated to guarantee operation.

Small buffer timing is specified driving an un-terminated 30Ω transmission line with a length characterized by a 2.5 ns oneway propagation delay. Small buffer output impedance is typically 30Ω ; the smaller buffer specifications include approximately 5 ns for the signal to propagate the length of the transmission line and back.

- 8/ Timing parameters 18 and 19 for data bus output timing apply when normal bus operation is selected. Parameters 28 and 29 should be used when the multiplexed bus mode of operation is enabled.
- <u>9</u>/ Timing parameters 21, 27, 28, and 29 are measured from BCLK edges. By design the device cannot drive address and data simultaneously during multiplexed operations.
- 10/ The levels on CDIS, MDIS, and the IPL2-IPL0 signals enable or disable the multiplexed bus mode, data latch enable mode, and driver impedance selection respectively.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	13

Case Y

Case Y Millimeters Dimensions Inches 2.184 3.302 0.086 0.130 А A1 2.032 2.794 0.080 0.110 A2 0.152 0.305 0.006 0.012 В 0.007 0.178 0.330 0.013 Β1 0.178 0.254 0.007 0.010 С 0.102 0.229 0.004 0.009 C1 0.102 0.152 0.004 0.006 D1, E1 33.655 34.163 0.325 1.345 30.480 BSC 1.200 BSC D2, E2 D3, E3 15.240 BSC 0.600 BSC F 4.445 5.715 0.175 0.225 G 1.498 1.549 0.059 0.061 2.921 BSC 1.150 BSC Н J 0.762 1.016 0.030 0.040 Κ - - -0.508 - - -0.020 L 64.516 2.540 63.500 2.500 L1 63.119 63.627 24.85 2.505 L2 42.926 43.434 1.690 1.710 - - -- - -Μ 0.038 0.0015 Ν 196 Ρ 28.067 28.575 1.105 1.125 R 22.606 23.114 0.890 0.910 ND 49

NOTES:

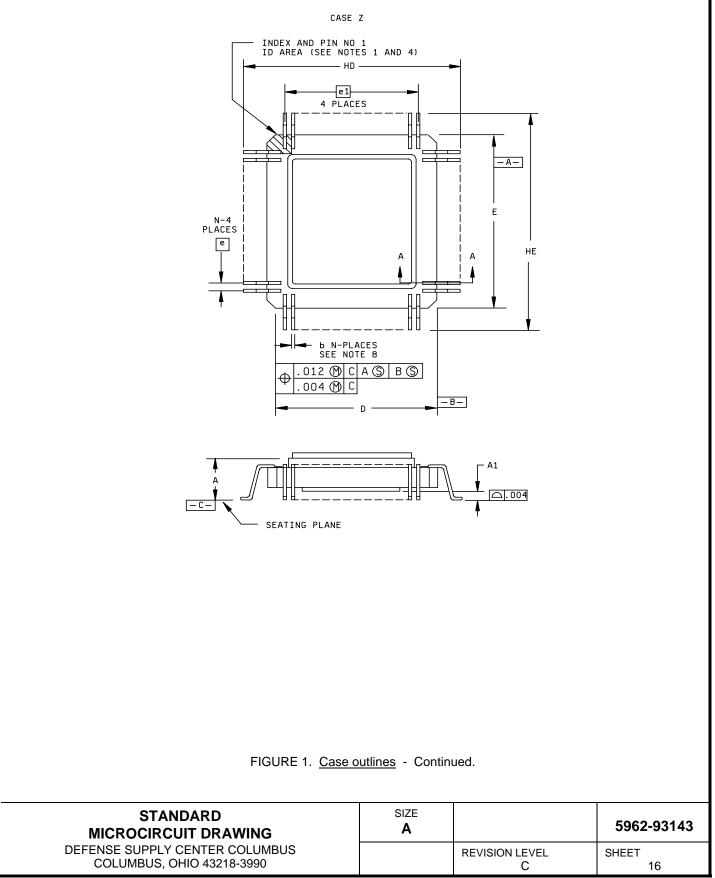
1/ Pin 1 index mark shall be located within the shaded area shown.

2/ Generic lead attach dogleg depiction. May be flat lead configuration

3/ Includes lead attach dogleg height and lid height, whichever is greater.

4/ Dimension N: number of terminals.

5/ Dimension ND: number of terminals per package edge.


6/ Controlling dimensions are in inches.

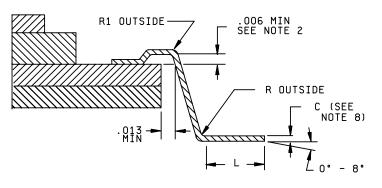

7/ Dimensions B1 and C1 apply to base metal only. Dimension M applies to the plating thickness.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	15

Case Z

SECTION A	-A
-----------	----

Case Z					
Symbol	Millim	neters	Inc	hes	
	Min	Max	Min	Max	
А		4.19		0.165	
A1	0.473	0.873	0.0185	0.0345	
b	0.192	0.280	0.0075	0.0110	
С	0.102	0.177	0.004	0.007	
D/E	33.66	34.16	1.325	1.345	
е	.635	BSC	0.025 BSC		
e1	30.35	30.61	1.195	1.205	
HD/HE	38.62	38.98	1.521	1.535	
L	0.613	1.013	0.024	0.04	
N	196		1	96	
R	0.3	0.8	0.012	0.032	
R1	0.23		0.009		

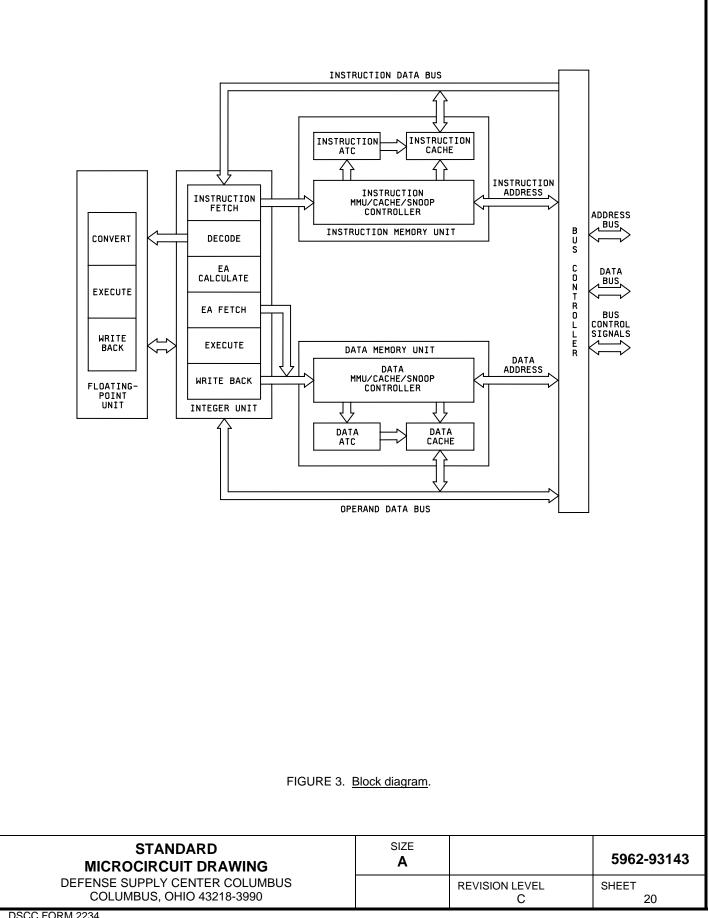
NOTES:

1. A terminal 1 identification mark shall be located at the index corner in the shaded area shown. Terminal 1 is located immediately adjacent to and counterclockwise from the index corner. Terminal numbers increase in a counterclockwise direction when viewed as shown.

- 2. Generic lead attach dogleg depiction.
- 3. Dimension N: Number of terminals.

4. Corner shapes (square, notch, radius, etc.) may vary from that shown on the drawing. The index corner shall be clearly unique.

- 5. Metric equivalents are given for general information only.
- 6. Controlling dimension: Inch.
- 7. Datums X and Y to be determined where center leads exit the body.
- 8. Dimensions b and c include lead finish.


FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	17

			Cas	se X			
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
A1	A31	C10	V _{cc}	K1	A15	R10	GND
A2	D3	C11	GND	K2	A16	R11	GND
A3	D4	C12	V _{cc}	K3	GND	R12	V _{CC}
A4	D5	C13	GND	K16	GND	R13	GND
A5	D6	C14	V _{cc}	K17	TM2	R14	P <u>ST</u> 2
A6	D7	C15	D23	K18	A1	R15	<u>_TIP</u>
A7	D9	C16	D25	L1	A14	R16	TS
A8	D10	C17	V _{cc}	L2	GND	R17	V _{cc}
A9	D11	C18	D28	L3	GND	R18	LOCKE
A10	D12	D1	A24	L16	V _{cc}	S1	IPEND
A11	D13	D2	GND	L17	GND	S2	GND
A12	D14	D3	A30	L18	A0	S3	TDI
A13	D15	D16	D27	M1	A13	S4	TCK
A14	D17	D17	GND	M2	V _{cc}	S5	TMS
A15	D19	D18	D31	M3	V _{cc}	S6	MDIS
A16	D20	E1	A22	M16	GND	S7	RSTI
A17	D21	E2	A26	M17		S8	
A18	D24	E3	A28	M18	TM1	S9	GND
B1	A29	E16	D29	N1	A12	S10	GND
B2	GND	E17	D30	N2	GND	S11	TBI
B3	D1	E18 F1	A8	N3 N16	A <u>11</u> R/W	S12	SC1 TEA
B4	GND		A21			S13	
B5 B6	V _{cc} GND	F2 F3	GND A25	N17 N18	GND TM0	S14 S15	PST1 GND
Бо В7	D8	гз F16	A25 A9	P1	A10	S15 S16	
Б7 B8	GND	F16 F17	GND	P1 P2	TT1	S16 S17	V _{cc} GND
B8 B9	V _{cc}	F17 F18	A7	P3	тто	S17 S18	LOCK
B9 B10	GND	G1	A7 A20	P16	SIZ1	T2	
B10 B11	D16	G2	V _{cc}	P17	SIZO	T3	TRST
B12	D18	G3	A23	P18	TLN1	T4	GND
B13	GND	G16	A6	Q1	UPA1	T5	
B14	V _{cc}	G17	V _{cc}	Q2	GND	T6	IPL2
B15	GND	G18	A5	Q3	UPA0	T7	IPL1
B16	D22	H1	A18	Q16	MI	T8	IPL0
B17	GND	H2	GND	Q17	GND	Т9	DLE
B18	D26	H3	V _{cc}	Q18	TLN0	T10	TCI
C1	A27	H16	V _{cc}	R1	CIOUT	T11	AVEC
C2	V _{cc}	H17	GND	R2	V _{cc}	T12	SC0
C3	D0	H18	A4	R3	RSTO	T13	BG
C4	D2	J1	A17	R4	GND	T14	TA
C5	V _{CC}	J2	A19	R5	V _{CC}	T15	PST0
C6	GND	J3	V _{CC}	R6	GND	T16	PST3
C7	GND	J16	V _{cc}	R7	BCLK	T17	BB
C8	V _{cc}	J17	A2	R8	V _{cc}	T18	BR
C9	GND	J18	A3	R9	PCLK		
			FIGURE 2. <u>Term</u>		<u>s</u> .		
	STAND CROCIRCUI	F DRAWING		SIZE A			5962-93143
	SE SUPPLY CE DLUMBUS, OHI	NTER COLUME O 43218-3990	BUS		REVISION LEV C	/EL	SHEET 18

	Case Y						
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	D0	50	GND	99	GND	148	GND
2	D1	51	GND	100	TIP	149	GND
3	V _{cc}	52	D28	101	PST3	150	IPEND
4	GND	53	D29	102	V _{cc}	151	CIOUT
5	D2	54	V _{CC}	103	PST2	152	V _{cc}
6	D3	55	D30	104	PST1	153	UPA0
7	GND	56	D31	105	GND	154	UPA1
8	D4	57	GND	106	GND	155	GND
9	GND	58	A9	107	P <u>ST</u> 0	156	TT0
10	GND	59	A8	108	TA	157	TT1
11	D5	60	V _{cc}	109	TEA	158	V _{cc}
12	V _{cc}	61	A7	110	BG	159	GND
13	D6 D7	62 62	A6	111	SC1 SC0	160	A10
14 15	D7 GND	63 64	GND A5	112 113	GND	161 162	A11 GND
15	D8	64 65	A5 A4	113		162	GND
17	D8 D9	66	V _{CC}	114	TBI	164	A12
18	V _{cc}	67	A3	116	AVEC	165	A12
19	GND	68	A2	117	TCI	166	V _{cc}
20	D10	69	GND	118	GND	167	A14
21	D11	70	A1	119	GND	168	A15
22	GND	71	A0	120	DLE	169	GND
23	D12	72	V _{cc}	121	GND	170	A16
24	D13	73	GND	122	GND	171	A17
25	V _{cc}	74	TM2	123	PCLK	172	GND
26	D14	75	TM1	124	GND	173	V _{cc}
27	D15	76	GND	125	GND	174	A18
28	GND	77	GND	126	V _{cc}	175	A19
29	D16	78	TM0	127	V _{cc}	176	GND
30	D17	79	TLN1	128	BCLK	177	A20
31	V _{cc}	80	V _{CC}	129	GND	178	A21
32	GND	81	TLN0	130	<u>GND</u>	179	V _{cc}
33	D18	82	SIZ0	131	<u>IPL0</u>	180	A22
34	D19	83	GND	132	IPL1	181	A23
35	GND D20	84	G <u>ND</u> R/W	133	IPL2 RSTI	182	GND
36 37	D20 D21	85 86		134 135		183 184	GND A24
38	V _{CC}	87	V _{CC}	135	CDIS MDIS	185	A24 A25
39	D22	88		130	V _{cc}	186	V _{cc}
40	V _{cc}	89	_SIZ1_	138		187	A26
40	D23	90	LOCK	139	TMS	188	A27
42	GND	91	GND	140	TRST	189	GND
43	D24	92		141	GND	190	A28
44	D25	93	BR	142	TCK	191	A29
45	GND	94	Vcc	143	TD1	192	V _{cc}
46	V _{cc}	95	TS	144	TD0	193	A30
47	D26	96	BB	145	RSTO	194	A31
48	D27	97	GND	146	GND	195	GND
49	GND	98	GND	147	GND	196	GND
		F	GURE 2. <u>Term</u>	ninal connection	<u>S</u> .		
				0175			

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	19

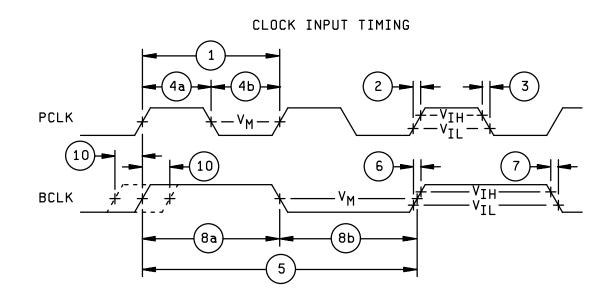
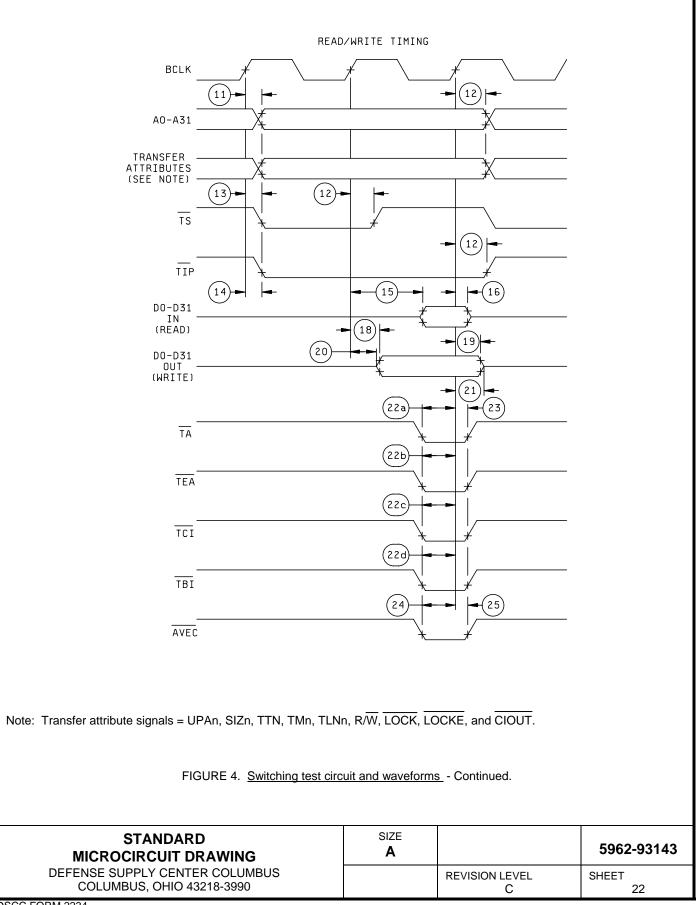
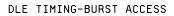
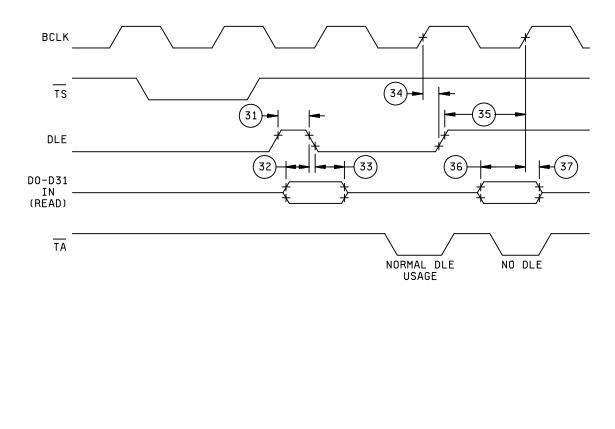
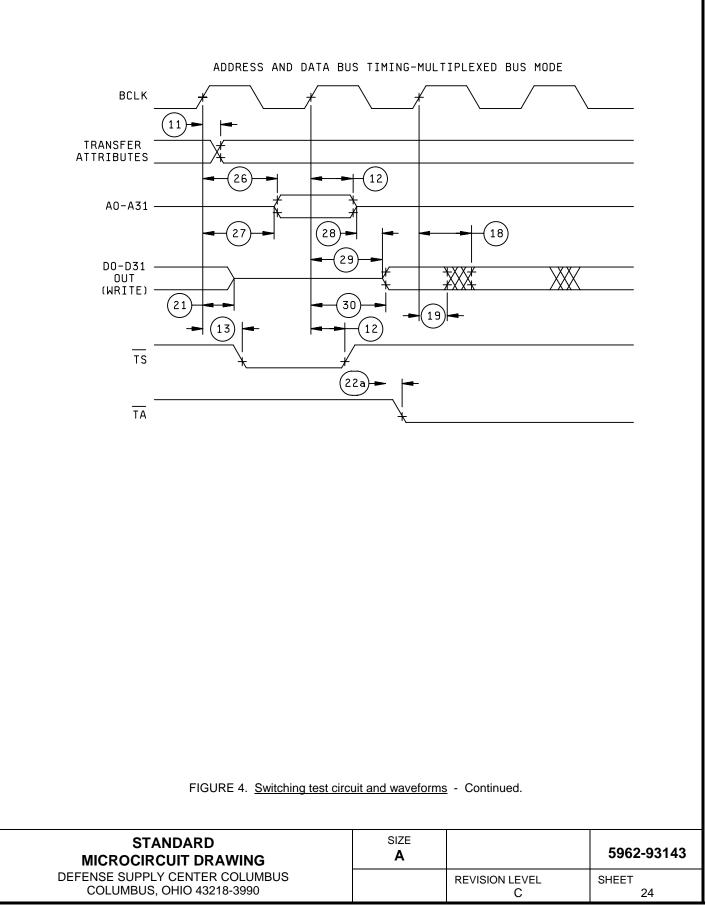
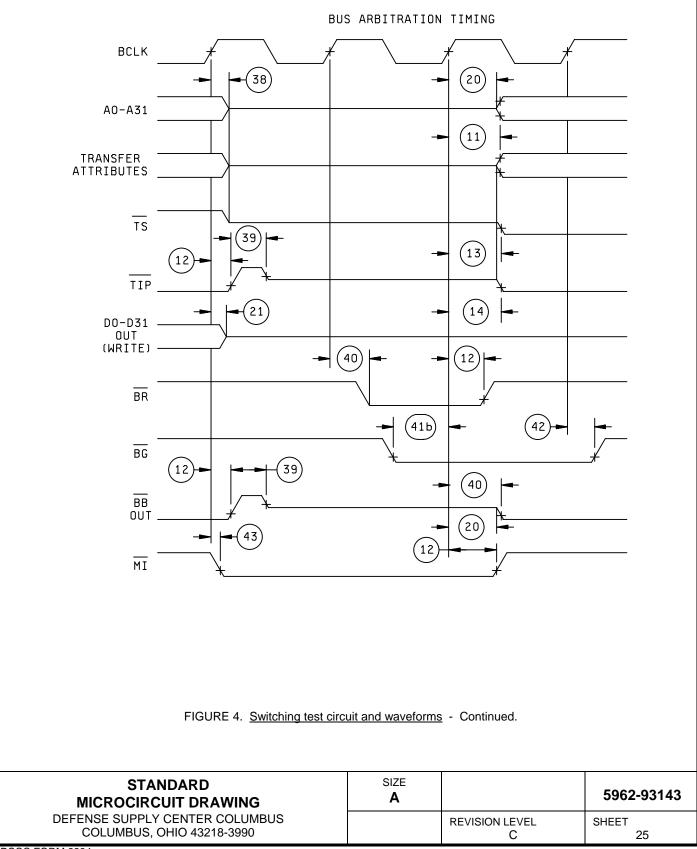
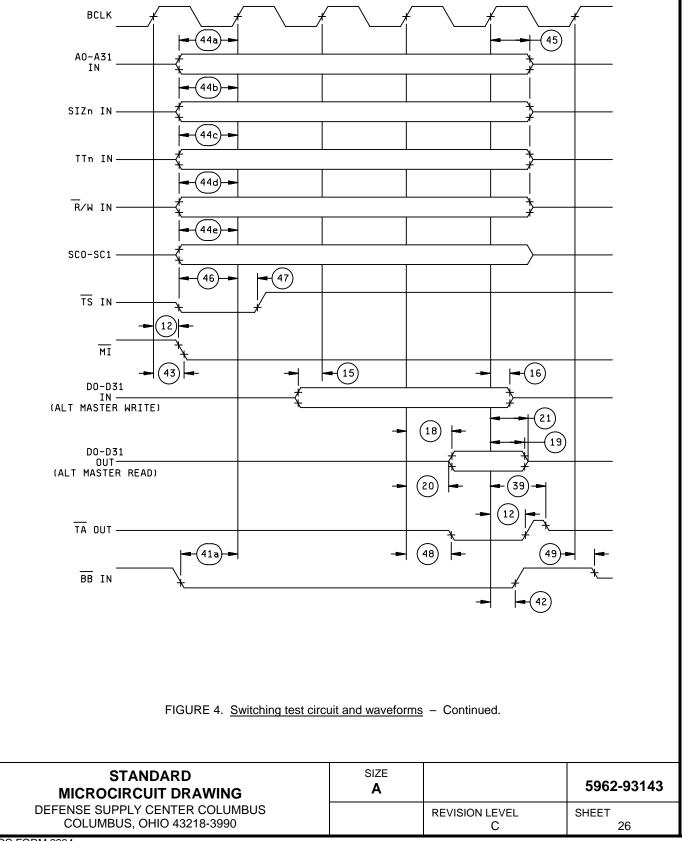
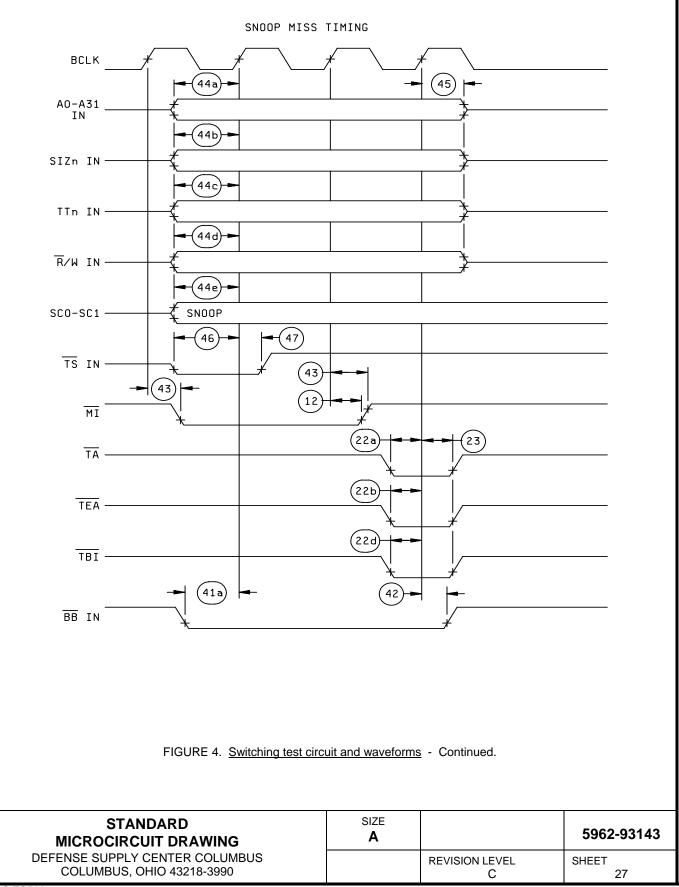




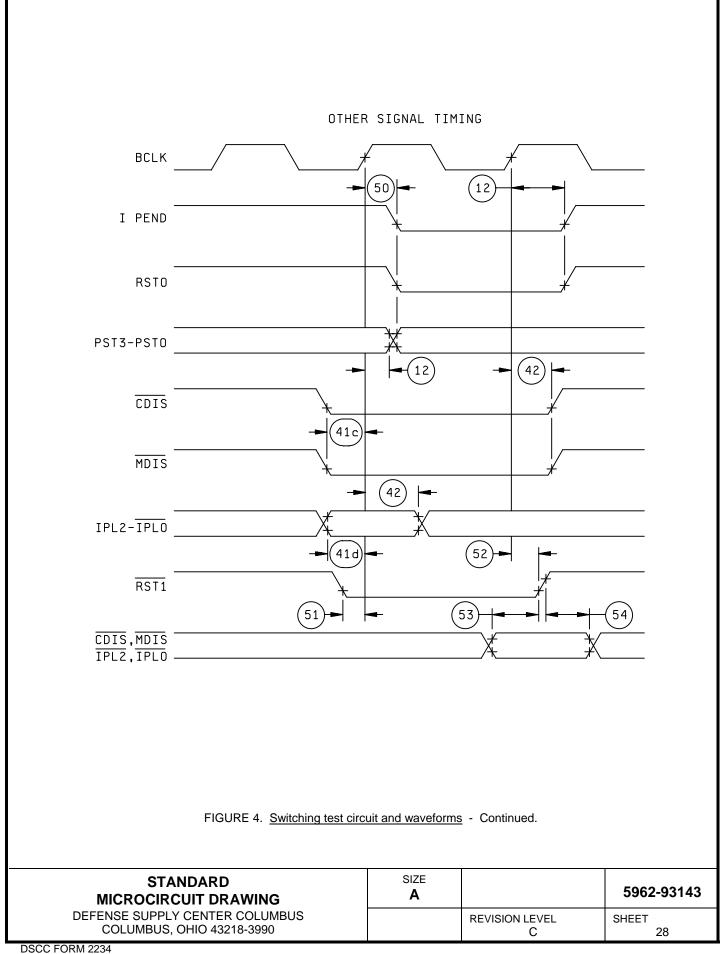
FIGURE 4. Switching test circuit and waveforms.

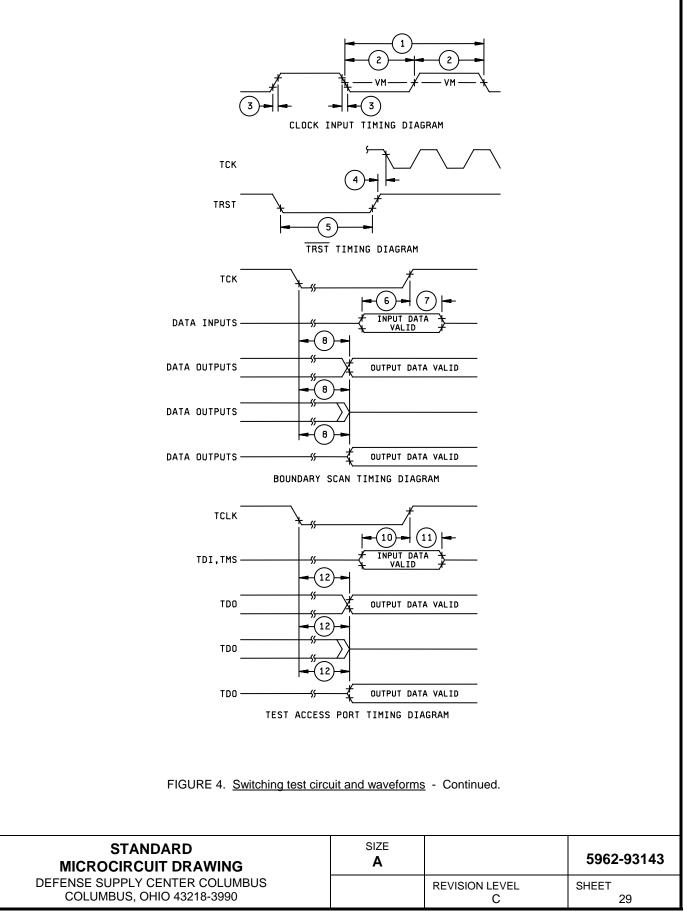
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	21


FIGURE 4. Switching test circuit and waveforms - Continued.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	23





SNOOP HIT TIMING

Bit 2	Bit 1	Bit 0	Instruction selected	Test data register accessed
0	0	0	EXTEST	BOUNDARY SCAN
0	0	1	HIGHZ	BYPASS
0	1	0	SAMPLE/PRELOAD	BOUNDARY SCAN
0	1	1	DRVCTLT	BOUNDARY SCAN
1	0	0	SHUTDOWN	BYPASS
1	0	1	PRIVATE	BYPASS
1	1	0	DRVCTLS	BOUNDARY SCAN
1	1	1	BYPASS	BYPASS

FIGURE 5. Boundary scan instruction codes.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	30

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero rejects shall be required.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	31

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	(in accord	roups Jance with 535, table III)
	Device	Device	Device
	class M	class Q	class V
Interim electrical	1, 7, 9	1, 7, 9	1, 7, 9
parameters (see 4.2)			
Final electrical	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
parameters (see 4.2)	9, 10, 11 <u>1</u> /	9, 10, 11 <u>1</u> /	9, 10, 11 <u>2</u> /
Group A test	1, 2, 3, 4, 7, 8,	1, 2, 3, 4, 7, 8,	1, 2, 3, 4, 7, 8,
requirements (see 4.4)	9, 10, 11	9, 10, 11	9, 10, 11
Group C end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3
Group D end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3
Group E end-point electrical parameters (see 4.4)			

TABLE II. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

2/ PDA applies to subgroups 1 and 7.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	32

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

A31-A0 (Address bus) 32-bit address bus used to address any of the 4-Gbytes.

D31-D0 (Data bus) 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

TT1,TT0 (Transfer type) Indicates the general transfer type: normal, MOVE16, alternate logical function code, and acknowledge.

TM2, TM0 (Transfer modifier) Indicates supplemental information about the access.

TLN1, TLN0 (Transfer line number) Indicates which cache line in a set is being pushed or loaded by current line transfer.

UPA1, UPA0 (User programmable attributes) User-defined signals, controlled by the corresponding user attribute bits from address translation entry.

R/W (Read/write) Identifies a transfer as a read or a write.

SIZ1, SIZ0 (Transfer size) Indicates the data transfer size. These signals, together with A0 and A1, define the active sections of the data bus.

LOCK (Bus lock) Indicates a bus transfer is part of a read-modify-write operation, and that the sequence of transfers should not be interrupted.

LOCKE (Bus lock end) Indicates the current transfer is the last in a locked sequence transfer.

CIOUT (Cache inhibit out) Indicates the processor will not cache the current bus transfer.

TS (Transfer start) Indicates the beginning of a bus transfer.

TIP (Transfer in progress) Asserted for the duration of a bus transfer.

TA (Transfer acknowledge) Asserted to acknowledge a bus transfer.

DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL SHEET	STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 33

TEA (T	Fransfer er	ror acknowledge)	Indicates an error	condition e	exists for a	bus transfer.
--------	-------------	------------------	--------------------	-------------	--------------	---------------

TCI (Transfer cache inhibit) Indicates the current bus transfer should not be cached.

TBI (Transfer burst inhibit) Indicates the slave cannot handle a line burst access.

DLE (Data latch enable) Alternate clock input used to latch input data when the processor is operating in DLE mode.

SC1, SC0 (Snoop control) Indicates the snooping operation required during an alternate master access.

MI (Memory inhibit) Inhibits memory devices from responding to an alternate master access during snooping operations.

BR (Bus request) Asserted by the processor to request bus mastership.

BG (Bus grant) Asserted by an arbiter to grant bus mastership to the processor.

BB (Bus busy) Asserted by the current bus master to indicate that it has assumed ownership of the bus.

CDIS (Cache disable) Dynamically disables the internal caches to assist emulator support.

MDIS (MMU disable) Disables the translation mechanism of MMU's.

RSTI (Reset in) Processor reset.

RSTO (Reset out) Asserted during execution of a RESET instruction to reset external devices.

IPL2-IPL0 (Interrupt priority level) Provides an encoded interrupt level to the processor.

IPEND (Interrupt pending) Indicates an interrupt is pending.

AVEC (Autovector) Used during an interrupt acknowledge transfer to request internal generation of the vector number.

PST3-PST0 (Processor status) Indicates internal processor status.

BCLK (Bus clock) Clock input used to derive all bus signal timing.

PCLK (Processor clock) Clock input used for internal logic timing. The PCLK frequency is exactly 2x the BCLK frequency.

TCK (Test clock) Clock signal for the IEEE P1149.1 test access port (TAP).

TMS (Test mode select) Selects the principle operations of the test-support circuitry.

TDI (Test data input) Serial data input for the TAP.

TDO (Test data output) Serial data output for the TAP.

TRST (Test reset) Provides an asynchronous reset of the TAP controller.

V_{CC} (Power supply) Power supply.

GND (Ground) Ground connection.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93143
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	34

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 05-10-17

Approved sources of supply for SMD 5962-93143 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9314301MXA	F8385	TS68040MR1B/C25A
5962-9314301MXC	F8385	TS68040MRB/C25A
5962-9314301MYC	F8385	TS68040MFTBC25A
5962-9314301MZA	F8385	TS68040MF1B/C25A
5962-9314301MZC	F8385	TS68040MFB/C25A
5962-9314302MXA	F8385	TS68040MR1B/C33A
5962-9314302MXC	F8385	TS68040MRB/C33A
5962-9314302MYC	F8385	TS68040MFTBC33A
5962-9314302MZA	F8385	TS68040MF1B/C33A
5962-9314302MZC	F8385	TS68040MFB/C33A

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

F8385

Vendor name and address

Atmel Grenoble Avenue De Rochepleine BP123 Saint Egreve CEDEX 38521, France

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.