
								R	EVISI	UNS										
LTR					D	ESCR	IPTIO	N					DA	TE (YF	R-MO-	DA)		APPR	OVED)
D	Corr dime	Corrected dimension D2 for case outlines U, X, and 4. dimensions D/E and D1/E1 for case outline Ysld								. Corr	ected		98-10-02			K.A. Cottongim		m		
E	Added case outline 9. Added device type 05. Added vendor of 0EU86 for device types 01 through 03 in the Standard Microcir Drawing Source Approval Bulletin. Figure 1; Made corrections outline M. Added thermal resistance ratings for all case outline paragraph 1.3. –sld									circuit	: case	00-05-11		Raymond Monnin		nin				
F	Adde	Added case outline A. Updated drawing to current requirements of MIL-PRF-38534sld									03-02-21				Raymond Monnin			nin		
G	Adde	ed cas	e outli	ne B.	Adde	d note	to par	agrapl	h 1.2.4	sld				03-1	0-10		Ra	aymon	d Mon	nin
Н	32 p max	F to 30 imum	6 pF a limit fr	E capa nd for om 32 to the	the C pF to	NE an 34 pF	d CAE for the) tests e case	chang outlin	ged the	Э	om		06-0	2-03		Ra	aymon	d Mon	nin
REV SHEET REV SHEET REV STATU		H 36 H 16	H	H	H	H	H	H												
OF SHEETS SHEET 1 2 3					19 V	20	21 H	22 H	H 23 H	H 24 H	H 25 H	H 26 H	H 27 H	H 28 H	H 29 H	H 30 H	H 31 H	H 32 H	H 33 H	H 34 H
PMIC N/A	S		17		19 V EET		Н	22 H	23 H	24	25	26	27	28	29	30	31	32	33	34
MICR	ANDAR OCIRC	UIT	17	RE SHE PRE Stev	19 V	D BY Juncar	H 1	22 H	23 H	24 H	25 H 5	26 H 6 EFEN	27 H 7 SE SI	28 H 8 JPPL BUS,	29 H 9 Y CE OHIO	30 H	31 H 11 COL 218-39	32 H 12	33 H 13	34 H
STA MICR DR THIS D AV FOR L	ANDAR OCIRC AWIN ARAWIN AILABLI JSE BY ARTMEN	SUIT GIS E ALL NTS OF TH	IE	REN SHE Stev CHE Mich	19 V EET PARE Ve L. I ECKEE hael C. PROVI dall A.	D BY Duncar D BY Jones ED BY Cotto	H 1	22 H 2	23 H 3	24 H 4 MIC ER	25 H 5 DI	26 H 6 EFEN CC	27 H 7 SE SI DLUM htt	28 H BUS, p://ww	29 H 9 Y CE OHK /w.ds BRID	30 H 10 NTER D 432 cc.dla	31 H 11 COL 218-39 L.mil	32 H 12 .UMB 390	33 H 13 US	34 H 14
STA MICR DR THIS D AV, FOR U DEPA AND AGE DEPARTME	ANDAR OCIRC AWIN ARAWIN AILABLI JSE BY ARTMEN	SUIT GIS E ALL NTS OF TH DEFE	IE	REV SHE Stev CHE Mich APF Kend	19 V EET PARE ve L. E ECKEE hael C	D BY Duncar D BY Jones ED BY Cotto	H 1 s ngim ROVA 7-31	22 H 2	23 H 3	24 H 4 MIC ER ME	25 H 5 DI	26 H 6 EFEN CC CIRC BLE RY, 5	27 H 7 SE SI DLUM htt	28 H BUS, p://ww HYE DGR/ x 32	29 H 9 Y CE OHK /w.ds BRID	30 H 10 NTER D 432 cc.dla	31 H 11 218-39 mil	32 H 12 JMB 990	33 H 13 US	34 H 14
STA MICR DR THIS D AV, FOR U DEPA AND AGE DEPARTME	ANDAR OCIRC AWIN DRAWIN AILABL JSE BY ARTMEN NCIES NT OF	SUIT GIS E ALL NTS OF TH DEFE	IE	REV SHE Stev CHE Mich APF Kend	19 V EET PARE ve L. I ECKEE hael C. PROVI dall A.	D BY Jones Jones ED BY Cotto G APPI 96-0	H 1 s ngim ROVA 7-31	22 H 2	23 H 3	24 H 4 MIC ER ME	25 H 5 DI	26 H 6 EFEN CC CIRC BLE RY, 5	27 H 7 SE SU DLUM htt /PRC	28 H BUS, p://ww HYE DGR x 32	29 H 9 Y CE OHK /w.ds BRID	30 H 10 NTER D 432 cc.dla	31 H 11 COL 218-39 L.mil	32 H 12 JMB 990	33 H 13 US	34 H 14

1. SCOPE

1.1 <u>Scope</u>. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 <u>PIN</u>. The PIN shall be as shown in the following example:

1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function	Access time
01	F512K32-150	EPROM FLASH, 512K x 32-bit	150 ns
02	F512K32-120	EPROM FLASH, 512K x 32-bit	120 ns
03	F512K32-090	EPROM FLASH, 512K x 32-bit	90 ns
04	F512K32-070	EPROM FLASH, 512K x 32-bit	70 ns
05	F512K32-060	EPROM FLASH, 512K x 32-bit	60 ns

1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

Device class	Device performance documentation
К	Highest reliability class available. This level is intended for use in space applications.
Н	Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.
G	Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C and D).
E	Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.
D	Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	2

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
А	See figure 1	68	Co-fired ceramic, single cavity, quad flatpack
В	See figure 1	68	Co-fired ceramic, single cavity, quad flatpack
M 1/	See figure 1	68	Co-fired ceramic, single/dual cavity, quad flatpack
N	See figure 1	68	Co-fired ceramic, single cavity, quad flatpack, low capacitance
Т	See figure 1	68	Co-fired ceramic, single cavity, low profile, quad flatpack
U	See figure 1	66	Co-fired ceramic, hex-in-line, single cavity, with standoffs
Х	See figure 1	66	Co-fired ceramic, hex-in-line, single cavity, without standoffs
Y	See figure 1	68	Co-fired ceramic, single cavity, quad flatpack, with tie bars
Z	See figure 1	68	Co-fired ceramic, single cavity, ultra low profile, quad flatpack
4	See figure 1	66	Co-fired ceramic, 1.075", hex-in-line, single cavity, with standoffs
9 <u>1</u> /	See figure 1	68	Co-fired ceramic, single cavity, ultra low profile, quad flatpack

1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38534.

1.3 Absolute maximum ratings. 2/

Supply voltage range (V _{cc}) <u>3</u> /	-2.0 V dc to +7.0 V dc
Signal voltage range (V _G)(any pin except A9) <u>3</u> /	-2.0 V dc to +7.0 V dc
Power dissipation (P _D)	1.32 W Maximum at 5 MHz
Thermal resistance, junction-to-case (θ_{JC}):	
Case outlines A, M and Z	10.2°C/W
Case outlines U and 4	10.63°C/W
Case outlines X and Y	6.5°C/W
Case outline N	12.36°C/W
Case outline B and 9	4.57°C/W
Storage temperature range	-65°C to +150°C
Lead temperature (soldering, 10 seconds)	+300°C
Data retention	10 years minimum
Endurance (write/erase cycles)	10,000 cycles minimum
A9 voltage for sector protect (V _{ID}) <u>4</u> /	-2.0 V dc to +14.0 V dc

1.4 Recommended operating conditions.

Supply voltage range (V _{cc})	+4.5 V dc to +5.5 V dc
Input low voltage range (V_{μ})	-0.5 V dc to +0.8 V dc
Input high voltage range (V_{IH})	+2.0 V dc to V _{cc} + 0.5 V dc
Case operating temperature range (T _c)	-55°C to +125°Č
A9 voltage for sector protect	+11.5 V dc to +12.5 V dc

<u>1</u>/ Due to the short leads of case outlines M (single cavity) and case outline 9, caution should be taken if the system application is to be used where extreme thermal transitions can occur. Case outline A can be used if longer leads are necessary.

2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

<u>3</u>/ Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, input may overshoot V_{ss} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins is V_{cc} + 0.5 V. During voltage transitions, outputs may overshoot to V_{cc} + 2.0 V for periods of up to 20 ns.

<u>4</u>/ Minimum DC input voltage on A9 pin is -0.5 V. During voltage transitions, A9 may overshoot V_{ss} to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on A9 is +13.5 V which may overshoot to +14.0 V for periods of up to 20 ns.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	3

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Truth table(s)</u>. The truth table(s) shall be as specified on figure 3.

3.2.4 Timing diagram(s). The timing diagram(s) shall be as specified on figures 4, 5, and 6.

3.2.5 <u>Block diagram</u>. The block diagram shall be as specified on figure 7.

3.2.6 <u>Output load circuit</u>. The output load circuit shall be as specified on figure 8.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	4

3.5 <u>Programming procedure</u>. The programming procedure shall be as specified by the manufacturer and shall be available upon request.

3.6 <u>Marking of Device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.7 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.

3.8 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.9 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

3.10 <u>Endurance</u>. A reprogrammability test shall be completed as part of the vendor's reliability monitors. This reprogrammability test shall be done for the initial characterization and after any design process changes which may affect the reprogrammability of the device. The methods and procedures may be vendor specific, but shall guarantee the number of program/erase cycles listed in section 1.3 herein over the full military temperature range. The vendor's procedure shall be kept under document control and shall be made available upon request of the acquiring or preparing activity.

3.11 <u>Data retention</u>. A data retention stress test shall be completed as part of the vendor's reliability monitors. This test shall be done for initial characterization and after any design process change which may affect data retention. The methods and procedures may be vendor specific, but shall guarantee the number of years listed in section 1.3 herein over the full military temperature range. The vendor's procedure shall be kept under document control and shall be made available upon request of the acquiring or preparing activity.

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	5

	T.	ABLE I. <u>Electrical per</u>	formance	e characte	eristics.				
Test	Symbol Conditions <u>1</u> /					evice ypes	Limits		Unit
		$-55^{\circ}C \le T_C \le +12$ unless otherwise sp		subgroups		урез	Min	Max	
DC parameters		Γ						I	1
Input leakage current	I _{LI}	$V_{CC} = 5.5 \text{ V dc}, V_{IN} = 0 \text{ or } V_{CC}$	= GND	1,2,3	3	All		10	μA
Output leakage current	I _{LO}	$V_{cc} = 5.5 \text{ V dc}, V_{iN}$ or V_{cc}	= GND	1,2,3	3	All		10	μΑ
$V_{cc}^{}$ active current for Read	I _{CC1}	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \ \overline{\text{OE}} = \text{V}_{\text{IH}},$ f = 5 MHz, $\text{V}_{\text{CC}} = 5.5$		1,2,3	3	All		190	mA
V _{cc} active current for program/erase	I _{CC2}	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \ \overline{\text{OE}} = \text{V}_{\text{IH}}$ f = 5 MHz, $\text{V}_{\text{CC}} = 5.8$		1,2,3	3	All		240	mA
V _{cc} standby current	I _{SB}	$\overline{\text{CS}} = \text{V}_{\text{IH}}, \text{ f} = 5 \text{ MHz}$ $\text{V}_{\text{CC}} = 5.5 \text{ V dc}$	·,	1,2,3	3	All		6.5	mA
Input low level	V _{IL}			1,2,3	3	All		0.8	v
Input high level	V _{IH}			1,2,3	3	All	2.0		V
Output low voltage	V _{OL}	V _{CC} = 4.5 V, I _{OL} = 8.	.0 mA	1,2,3	3	All		0.45	V
Output high voltage	V _{OH}	V _{CC} = 4.5 V, I _{OL} = -2	2.5 mA	1,2,3	3	All	0.85 x V _{cc}		V
Dynamic characteristics	1	I							
OE capacitance <u>3</u> /	C _{OE}	V _{IN} = 0 V, f = 1.0 Mł T _A = +25° C	Ηz,	4		All		50	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_A = +25^{\circ} C,$ Case outline N only		4		All		36	pF
See footnotes at end of table.									
STAN MICROCIRC	IDARD UIT DRAV	VING		ZE A				5962-	94612
DEFENSE SUPPLY COLUMBUS, C					REVISI	ON LE' H	VEL	SHEET	6

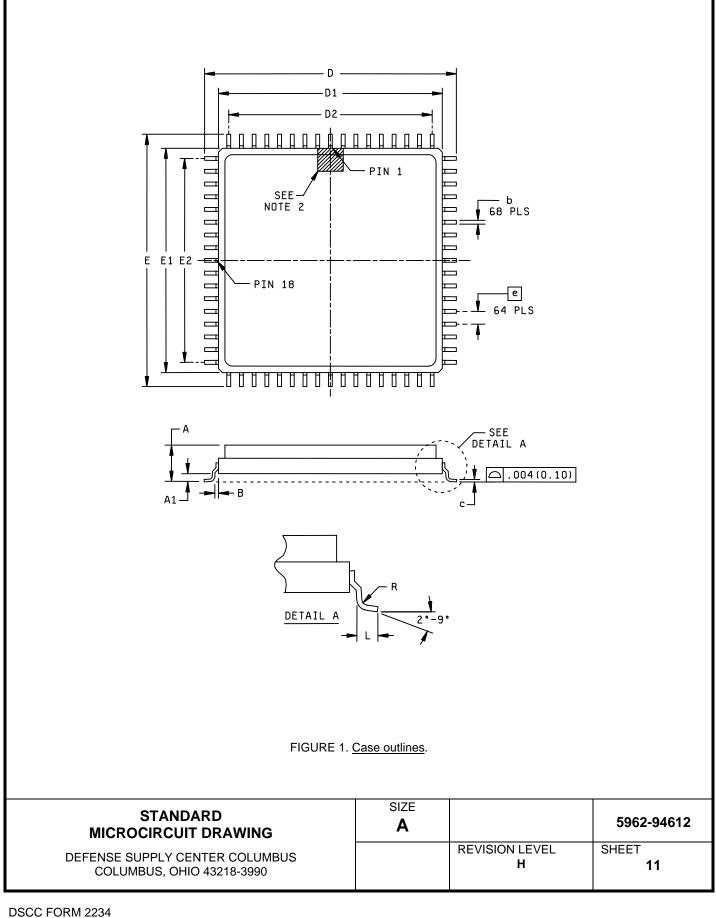

	TABLE	I. Electrical performar	nce chara	cteristics	- Con	tinued.			
Test	Symbol	Conditions <u>1/ 2</u>				Device	Limits		Unit
		$-55^{\circ}C \le T_C \le +12$ unless otherwise spe				types	Min	Max	
Dynamic characterisitics - Cont	inued	t							1
WE ₁₋₄ capacitance <u>3</u> /	C _{WE}	$V_{IN} = 0 V, f = 1.0 MH$ $T_A = +25^{\circ} C,$ Case outlines A, B, M and 9		4		All		20	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_{A} = +25^{\circ} C, Case o$ T		4		All		50	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_{A} = +25^{\circ} C, Case o$ N	lz, utline	4		All		34	pF
CS 1-4 capacitance <u>3</u> /	C _{cs}	V _{IN} = 0 V, f = 1.0 MH T _A = +25° C	lz,	4		All		20	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_{A} = +25^{\circ} C,$ Case outline N only	lz,	4		All		15	pF
Data I/O capacitance <u>3</u> /	C _{I/O}	V _{IN} = 0 V, f = 1.0 MH T _A = +25° C	lz,	4		All		20	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_A = +25^{\circ} C,$ Case outline N only	lz,	4		All		15	pF
Address input capacitance <u>3</u> /	C _{AD}	V _{IN} = 0 V, f = 1.0 MH T _A = +25° C	lz,	4		All		50	pF
		$V_{IN} = 0 V, f = 1.0 MH$ $T_{A} = +25^{\circ} C,$ Case outline N only	lz,	4		All		34	pF
Functional testing									
Functional tests		See 4.3.1c		7, 8A,	8B	All			
See footnotes at end of table.									
	DARD	VING	siz A					596	62-94612
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990					REV	ISION LE\ H	/EL	SHEE	T 7

	TABLE	I. Electrical performa	nce characteristic	<u>cs -</u> Cor	ntinued.			
Test	Symbol	Conditions <u>1</u> / 2				Limits		Unit
		$-55^{\circ}C \le T_C \le +12$ unless otherwise sp		oups	types	Min	Max	
Read cycle AC timing characte	ristics							
Read cycle time	t _{RC}	See figure 4	9,10),11	01 02 03 04 05	150 120 90 70 60		ns
Address access time	t _{ACC}	See figure 4	9,10),11	01 02 03 04 05		150 120 90 70 60	ns
Chip select access time	t _{CE}	See figure 4	9,10),11	01 02 03 04 05		150 120 90 70 60	ns
Output enable to output valid	t _{OE}	See figure 4	9,10),11	01 02 03,04 05		55 50 35 30	ns
Output hold from address, \overline{CS} or \overline{OE} change, whichever is first	t _{OH}	See figure 4	9,10),11	All	0		ns
Write/Erase/Program AC timing	g characteri	stics WE controlled						1
Write cycle time	t _{wc}	See figure 5	9,10),11	01 02 03 04 05	150 120 90 70 60		ns
Chip select setup time	t _{cs}	See figure 5	9,10),11	All	0		ns
Write enable pulse width	t _{WP}	See figure 5	9,10),11	01,02 03,04 05	50 45 40		ns
See footnotes at end of table.								
STANDARD MICROCIRCUIT DRAWING		WING	SIZE A				590	62-94612
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990				REV	ISION LEV H	/EL	SHEE	T 8

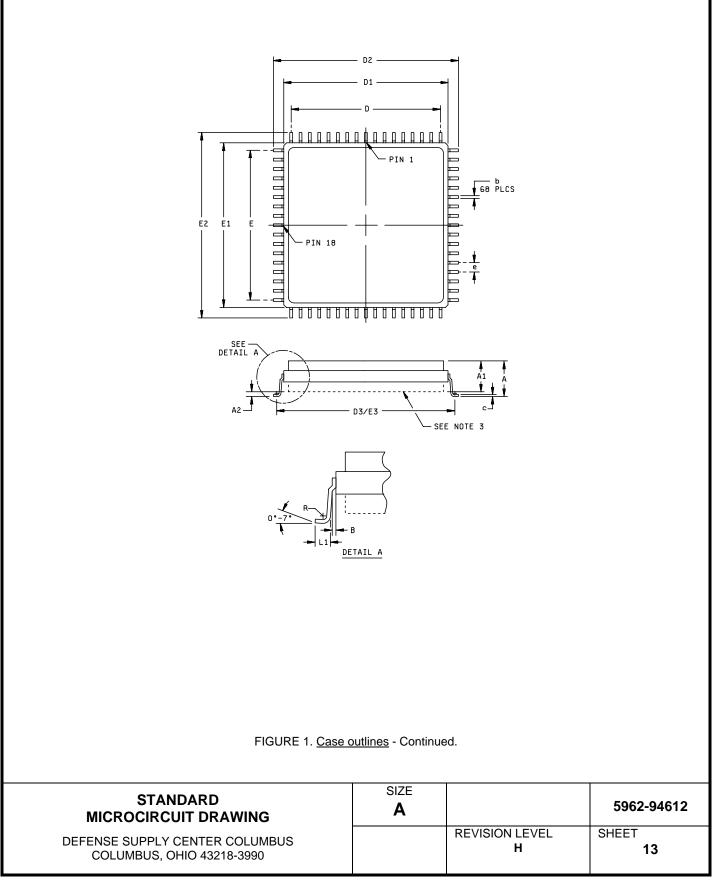
	TABLE	I. Electrical performance char	acteristics - Co	ontinued.			
Test	Symbol	Conditions <u>1/ 2/</u> -55°C \leq T _C \leq +125°C unless otherwise specified	Group A subgroups	Device types	Lim Min	nits Max	Unit
Write/Erase/Program AC tim	ing characteri	stics WE controlled - Continue	l				
Address setup time	t _{AS}	See figure 5	9,10,11	All	0		ns
Data setup time	t _{DS}	See figure 5	9,10,11	01,02 03,04 05	50 45 40		ns
Data hold time	t _{DH}	See figure 5	9,10,11	All	0		ns
Address hold time	t _{AH}	See figure 5	9,10,11	01,02 03,04 05	50 45 45		ns
Write enable pulse high	t _{wPH}	See figure 5	9,10,11	All	20		ns
Chip erase time			9,10,11	All		120	S
Sector erase time			9,10,11	All		30	s
Programming time			9,10,11	All		50	S
Write/Erase/Program AC tim	ing characteri	stics CS controlled.		-			1
Write cycle time	t _{wc}	See figure 6	9,10,11	01 02 03 04 05	150 120 90 70 60		ns
Write enable setup time	t _{ws}	See figure 6	9,10,11	All	0		ns
Chip select pulse width	t _{CP}	See figure 6	9,10,11	01,02 03,04 05	50 45 40		ns
See footnotes at end of tabl	е.						
STANDARD			ZE A			59	62-94612
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		OLUMBUS	RE	VISION LE' H	VEL	SHEE	т 9

	TABLE	I. Electrical performar	nce charact	eristics - C	ontinued.				
Test	Symbol	Conditions <u>1</u> /2		Group A	Device	Limits		Unit	
		$-55^{\circ}C \le T_C \le +12$ unless otherwise spe	00	subgroups	types	Min	Max		
Write/Erase/Program AC characteristics controlled - Continued.									
Address setup time	t _{AS}	See figure 6		9,10,11	All	0		ns	
Data hold time	t _{DH}	See figure 6		9,10,11	All	0		ns	
Data setup time	t _{DS}	See figure 6		9,10,11	01,02 03,04 05	50 45 40		ns	
Address hold time	t _{AH}	See figure 6		9,10,11	01,02 03,04 05	50 45 45		ns	
Chip select pulse width high	t _{CPH}	See figure 6		9,10,11	All	20		ns	
Chip erase time				9,10,11	All		120	s	
Sector erase time				9,10,11	All		30	s	
Programming time				9,10,11	All		50	S	
<u>1</u> / Unless otherwise specified, 4.5 V dc $\leq V_{CC} \leq 5.5$ V dc and $V_{SS} = 0$ V. <u>2</u> / Unless otherwise specified, the DC test conditions are as follows: Input pulse levels: $V_{IH} = V_{CC} - 0.3$ V and $V_{IL} = 0.3$ V. Unless otherwise specified, the AC test conditions are as follows: Input pulse levels: $V_{IL} = 0$ V and $V_{IH} = 3.0$ V. Input rise and fall times: 5 nanoseconds. Input and output timing reference levels: 1.5 V. Output load circuit as specified in figure 7. <u>3</u> / Parameters shall be tested as part of design characterization and after any design or process changes which may affect these parameters. Parameters shall be guaranteed to the limits specified in table I for all lots not specifically tested.									
	DARD		SIZE A				596	62-94612	
MICROCIRCU DEFENSE SUPPLY (COLUMBUS, O		OLUMBUS		RE	VISION LE H	VEL	SHEE	т 10	

Case outline A.

Case outline A - Continued.

Symbol	Millim	neters	Inc	hes	
	Min	Max	Min	Max	
А		5.10		.200	
A1	1.37		.054		
b	0.33	0.43	.013	.017	
В	0.25 TYP		.010 TYP		
с	0.23	0.30	.009	.012	
D/E	24.9	25.4	.980	1.000	
D1/E1	22.10	22.61	.870	.890	
D2/E2	20.32	BSC	.800 BSC		
е	1.27 BSC		.050 BSC		
L	0.89	1.14	.035	.045	
R	0.25 TYP			TYP	


NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Details of pin 1 identifier are optional, but must be located within the zone indicated.

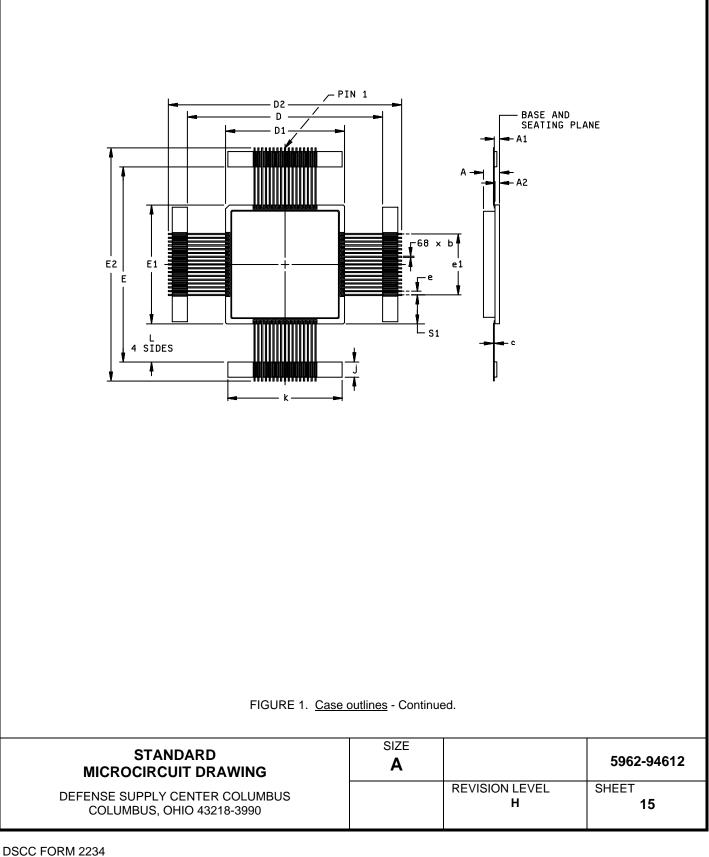
FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	12

Case outline M.

DSCC FORM 2234 APR 97 Case outline M - Continued.

Millim	eters	Inc	hes	
Min	Max	Min	Max	
3.12	5.10	.123	.200	
2.30	4.72	.118	.186	
0.24	0.64	.005	.025	
0.33	0.43	.013	.017	
0.25	REF	.010 REF		
0.23	0.30	.009	.012	
20.3	BSC	.800 BSC		
22.10	22.65	.870	.890	
24.89	25.35	.980	1.000	
23.75	24.28	.936	.956	
		.050 BSC		
		.010 BSC		
0.89	1.14	.035	.045	
	Min 3.12 2.30 0.24 0.33 0.25 0.23 20.3 22.10 24.89 23.75 1.27 0.25	3.12 5.10 2.30 4.72 0.24 0.64 0.33 0.43 0.25 REF 0.20 October 100 October 10	Min Max Min 3.12 5.10 .123 2.30 4.72 .118 0.24 0.64 .005 0.33 0.43 .013 0.25 REF .010 0.23 0.30 .009 22.10 22.65 .870 24.89 25.35 .980 23.75 24.28 .936 1.27 BSC .050 .050	


NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

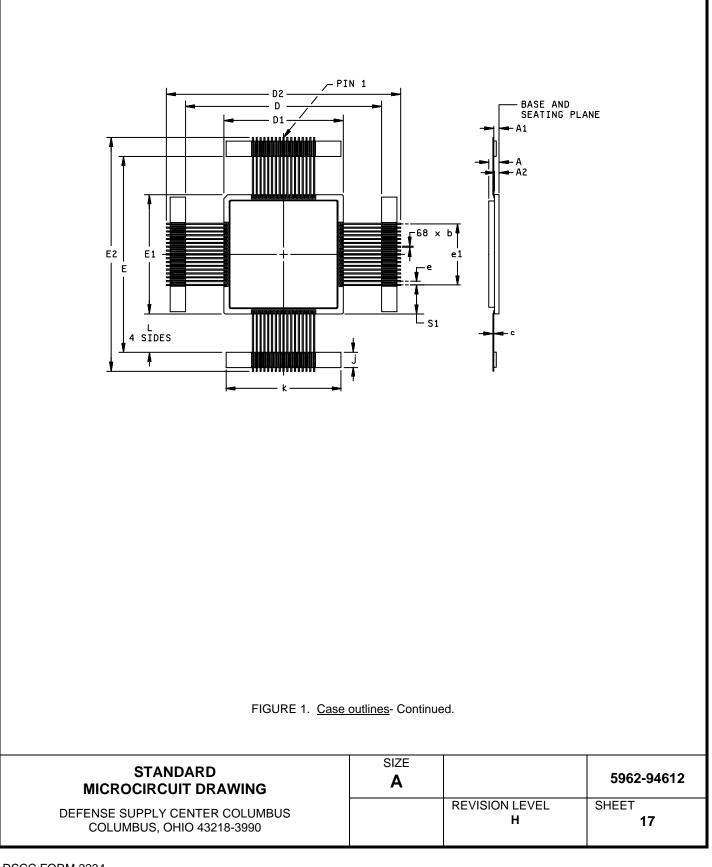
3. Case outline M may be either a single or dual cavity package. Dimension A2 is measured between the lowest horizontal plane of the package and the seating plane of the lead(s).

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	14

Symbol	Millim	Millimeters		hes
	Min	Max	Min	Max
A	2.92	5.10	.115	.200
A1	1.40	1.65	.055	.065
A2	1.14	1.40	.045	.055
b	0.30	0.46	.012	.018
с	0.23	0.31	.009	.012
D/E	63.63	66.42	2.505	2.615
D1/E1	39.24	40.01	1.545	1.575
D2/E2	73.28	84.20	2.885	3.315
е	1.14	1.40	.045	.055
e1	19.10	21.16	.750	.850
j	4.83	5.33	.190	.210
k	37.72	38.48	1.485	1.515
L	12.19	13.21	.480	.520
S1	9.45	9.86	.372	.388

NOTES:


1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.

2. Pin numbers are for reference only.

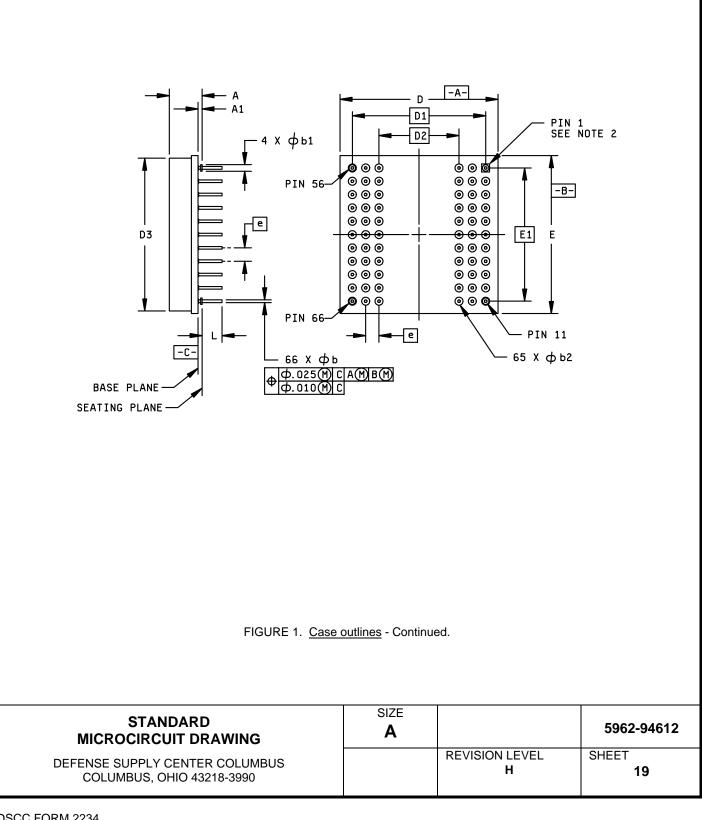
FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	16

Case outline T.

Case outline T - Continued.

Symbol	Millimeters		Inc	ches
	Min	Max	Min	Max
A	2.92	3.56	.115	.140
A1	1.40	1.65	.055	.065
A2	1.14	1.40	.045	.055
b	0.30	0.46	.012	.018
с	0.23	0.31	.009	.012
D/E	63.63	66.42	2.505	2.615
D1/E1	39.24	40.01	1.545	1.575
D2/E2	73.28	84.20	2.885	3.315
е	1.14	1.40	.045	.055
e1	19.10	21.16	.750	.850
j	4.83	5.33	.190	.210
k	37.72	38.48	1.485	1.515
L	12.19	13.21	.480	.520
S1	9.45	9.86	.372	.388


NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	18

Case outlines U, X, and 4.

Case outlines U and X - Continued.

Symbol	Millimeters		Inc	Inches		
	Min	Max	Min	Max		
A	3.30	6.22	.130	.245	_	
A1	0.13	0.89	.005	.035		
θb	0.41	0.51	.016	.020		
θb1	1.14	1.40	.045	.055		
θb2	1.65	1.91	.065	.075		
D/E	26.92	30.48	1.060	1.200		
D1/E1		BSC		0 BSC		
D2		BSC		BSC	-	
 D3	26.16	34.29	1.030	1.350	-	
e	2.54 BSC		.100 BSC		-	
L	3.68	3.94	.145	.155	(case U)	
L	4.19	4.70	.165	.185	(case X)	

NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin 1 is identified by a .070 square pad.
- 3. Pin numbers are for reference only.
- 4. Case outline U has standoffs and case outline X does not have standoffs.

5. For case outline U, dimension A is measured from the top of the package to the bottom of the standoff. For case outline X, dimension A is measured from the top of the package to the bottom of the seating plane.

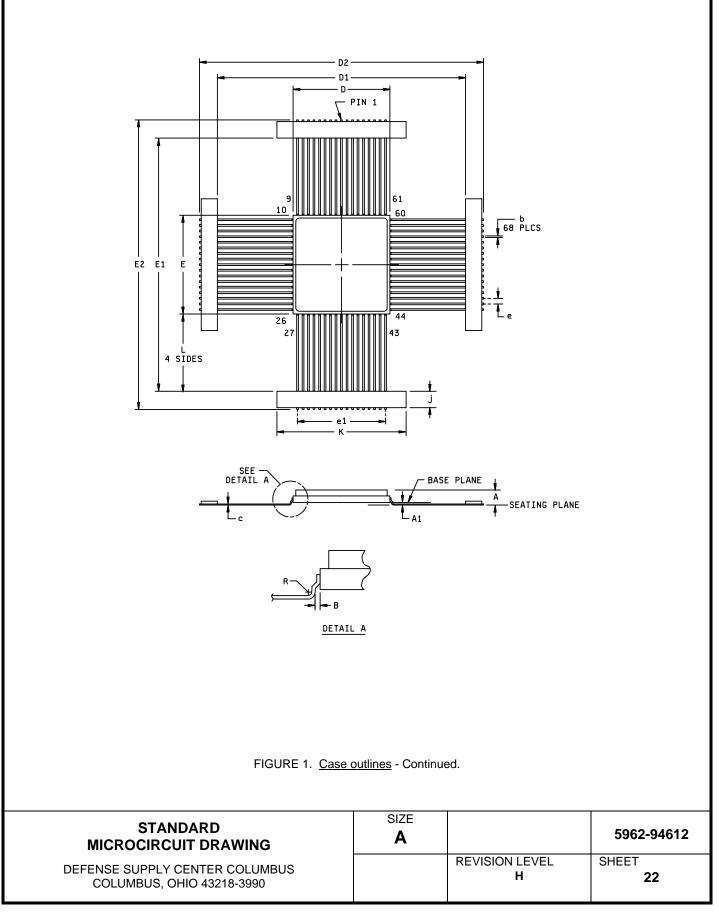
6. For case ouline U, dimension L is measured from the bottom of the standoff to the end of the lead. For case outline X, dimension L is measured from the bottom of the seating plane to the end of the lead.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	20

Case outline 4 - Continued.

Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
A	3.43	4.60	.135	.181
A1	0.64	0.89	.025	.035
θb	0.41	0.51	.016	.020
0b1	1.14	1.40	.045	.055
θb2	1.65	1.91	.065	.075
D/E	27.05	27.56	1.065	1.085
D1/E1	25.40 BSC		1.000 BSC	
D2	15.24	BSC	.600 BSC	
D3	25.90	26.92	1.020	1.060
е	2.54 BSC		.100	BSC
L	3.35	3.94	.132	.155


NOTES:

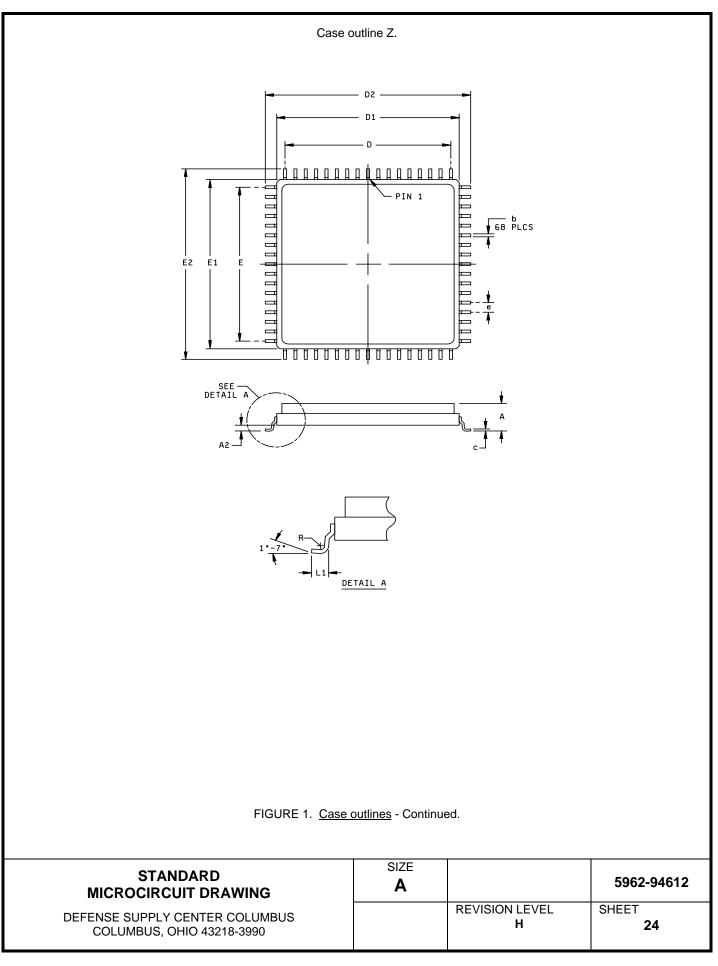
- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin 1 is identified by a .070 square pad.
- 3. Pin numbers are for reference only.

FIGURE 1.	Case outlines	- Continued.
-----------	---------------	--------------

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	21

Case outline Y.

DSCC FORM 2234 APR 97


	i		ł		
Symbol	Millimeters		Inc	hes	
	Min	Max	Min	Max	
А	3.12	4.06	.123	.160	
A1	0.13	0.64	.005	.025	
В	0.25	REF	.010	REF	
b	0.33	0.43	.013	.017	
с	0.23	0.31	.009	.012	
D/E	22.10	22.65	.870	.890	
D1/E1	64.52	65.53	2.540	2.580	
D2/E2	74.78	77.72	2.940	3.060	
е	1.27	1.27 BSC		.050 BSC	
e1	20.12	20.52	.792	.808	
i	4.83	5.33	.190	.210	
k	37.72	38.48	1.485	1.515	
L	21.34 REF			REF	
R		ТҮР		TYP	

NOTES:

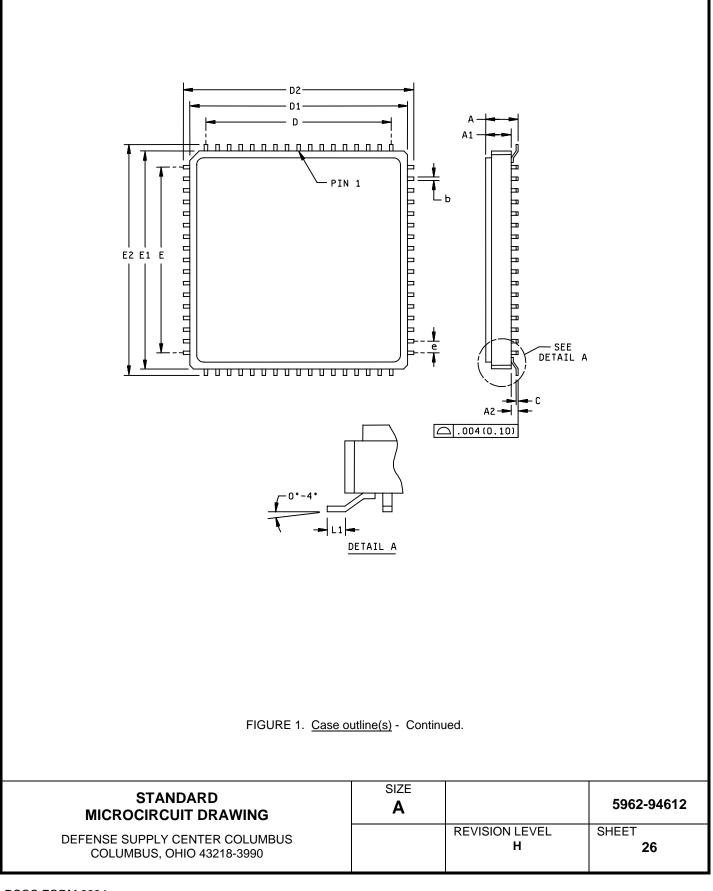
- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

FIGURE 1.	Case outlines	- Continued.
1100116 11	0000 000000	00111110001

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	23

DSCC FORM 2234 APR 97 Case outline Z - Continued.

Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
A		3.56		.140
A2	0.36	0.71	.014	.028
b	0.33	0.43	.013	.017
С	0.23	0.30	.009	.012
D/E	20.32 BSC		.800 BSC	
D1/E1	22.10	22.61	.870	.890
D2/E2	24.89	25.35	.980	1.000
e	1.27 TYP) TYP
R	0.13 MIN			5 MIN
L1	0.89	1.14	.035	.045


NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	25

Case outlines B and 9.

Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
А		4.06		.160
A1		2.79		.110
A2	1.12	1.42	.044	.056
b	0.33	0.43	.013	.017
С	0.15	0.25	.006	.010
D/E	20.32	BSC	.800 BSC	
D1/E1	23.65	24.10	.931	.949
D2/E2	24.89	25.40	.980	1.000
е	1.27 BSC		.050	BSC
L1	0.51	1.14	.020	.045

Case outline B - Continued

Case outline 9 - Continued

Symbol	Millim	neters	Incl	hes
	Min	Max	Min	Max
А		3.56		.140
A1		2.79		.110
A2	0.46	0.76	.018	.030
b	0.33	0.43	.013	.017
С	0.15	0.25	.006	.010
D/E	20.32 BSC		.800 BSC	
D1/E1	23.65	24.10	.931	.949
D2/E2	24.89	25.40	.980	1.000
е	1.27 BSC		.050	BSC
L1	0.51	1.14	.020	.045

NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	27

r	T			r	r	r	
Device types	All	Device types	All	Device types	All	Device types	All
Case outlines	A, B, M, Y, Z, 9						
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	GND	18	GND	35	ŌĒ	52	GND
2	CS3	19	I/O8	36	CS2	53	I/O23
3	A5	20	I/O9	37	A17	54	I/O22
4	A4	21	I/O10	38	WE2	55	I/O21
5	A3	22	I/O11	39	WE3	56	I/O20
6	A2	23	I/O12	40	WE4	57	I/O19
7	A1	24	I/O13	41	A18	58	I/O18
8	A0	25	I/O14	42	NC	59	I/O17
9	NC	26	I/O15	43	NC	60	I/O16
10	I/O0	27	V _{cc}	44	I/O31	61	V _{cc}
11	I/O1	28	A11	45	I/O30	62	A10
12	I/O2	29	A12	46	I/O29	63	A9
13	I/O3	30	A13	47	I/O28	64	A8
14	I/O4	31	A14	48	I/O27	65	A7
15	I/O5	32	A15	49	I/O26	66	A6
16	I/O6	33	A16	50	I/O25	67	WE1
17	I/07	34	CS1	51	I/O24	68	CS4

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	28

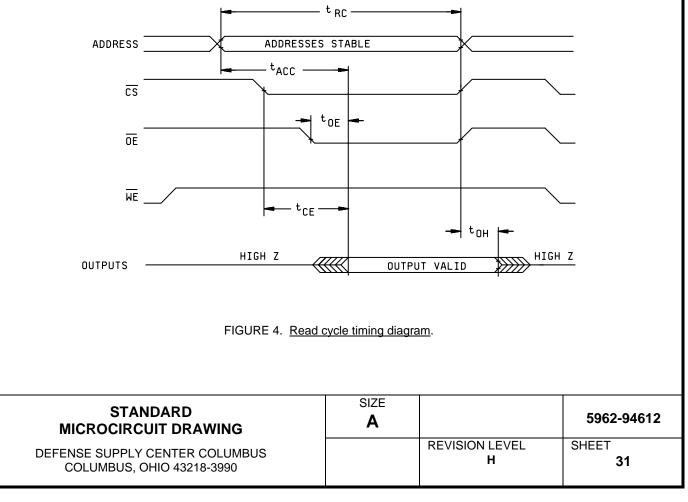
Device types	All	Device types	All	Device types	All	Device types	All
Case outlines	N,T	Case outlines	N,T	Case outlines	N,T	Case outlines	N,T
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	GND	18	GND	35	ŌĒ	52	GND
2	CS1	19	I/O8	36	CS4	53	I/O23
3	A5	20	I/O9	37	A17	54	I/O22
4	A4	21	I/O10	38	A18	55	I/O21
5	A3	22	I/O11	39	NC	56	I/O20
6	A2	23	I/O12	40	NC	57	I/O19
7	A1	24	I/O13	41	NC	58	I/O18
8	A0	25	I/O14	42	NC	59	I/O17
9	NC	26	I/O15	43	NC	60	I/O16
10	I/O0	27	V _{cc}	44	I/O31	61	V _{cc}
11	I/O1	28	A11	45	I/O30	62	A10
12	I/O2	29	A12	46	I/O29	63	A9
13	I/O3	30	A13	47	I/O28	64	A8
14	I/O4	31	A14	48	I/O27	65	A7
15	I/O5	32	A15	49	I/O26	66	A6
16	I/O6	33	A16	50	I/O25	67	WE
17	I/07	34	CS2	51	I/O24	68	CS3

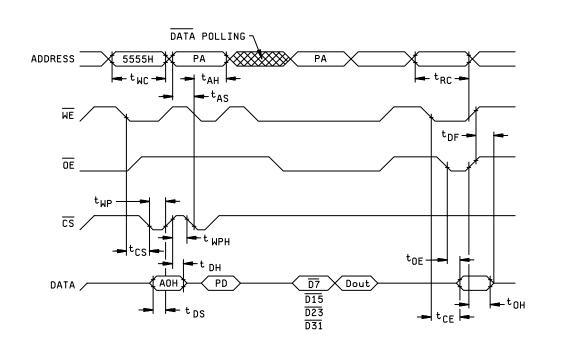
FIGURE 2. <u>Terminal connections</u> - Continued.

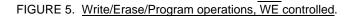
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	29

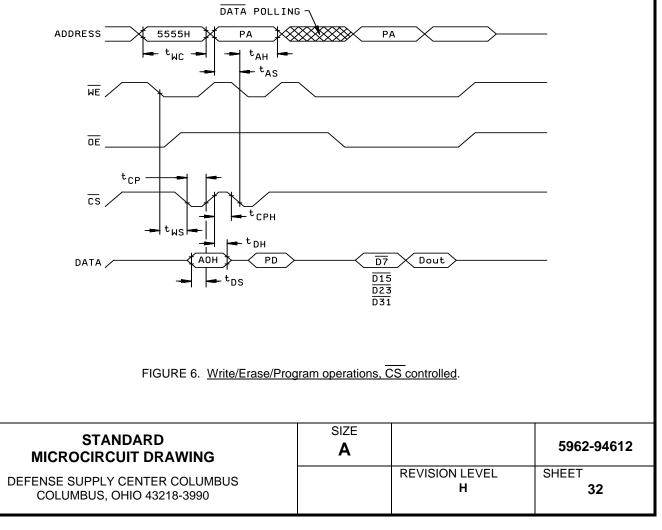
Device type	All	Device type	All	Device type	All	Device type	All
Case outlines	U, X, 4						
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	I/O8	18	A15	35	I/O25	52	WE3
2	I/O9	19	V _{cc}	36	I/O26	53	CS3
3	I/O10	20	CS1	37	A7	54	GND
4	A14	21	NC	38	A12	55	I/O19
5	A16	22	I/03	39	NC	56	I/O31
6	A11	23	I/015	40	A13	57	I/O30
7	A0	24	I/O14	41	A8	58	I/O29
8	A18	25	I/O13	42	I/O16	59	I/O28
9	I/O0	26	I/O12	43	I/O17	60	A1
10	I/O1	27	ŌĒ	44	I/O18	61	A2
11	I/O2	28	A17	45	V _{cc}	62	A3
12	WE2	29	WE1	46	CS4	63	I/O23
13	CS2	30	I/07	47	WE4	64	I/O22
14	GND	31	I/O6	48	I/O27	65	I/O21
15	I/O11	32	I/O5	49	A4	66	I/O20
16	A10	33	I/O4	50	A5		
17	A9	34	I/O24	51	A6		

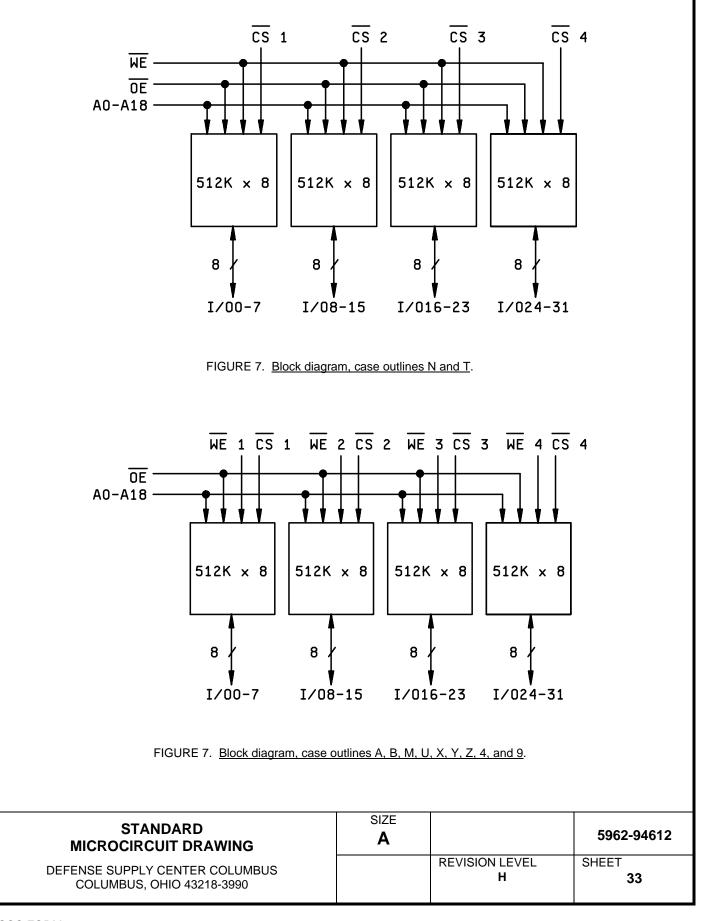
FIGURE 2. <u>Terminal connections</u> - Continued.

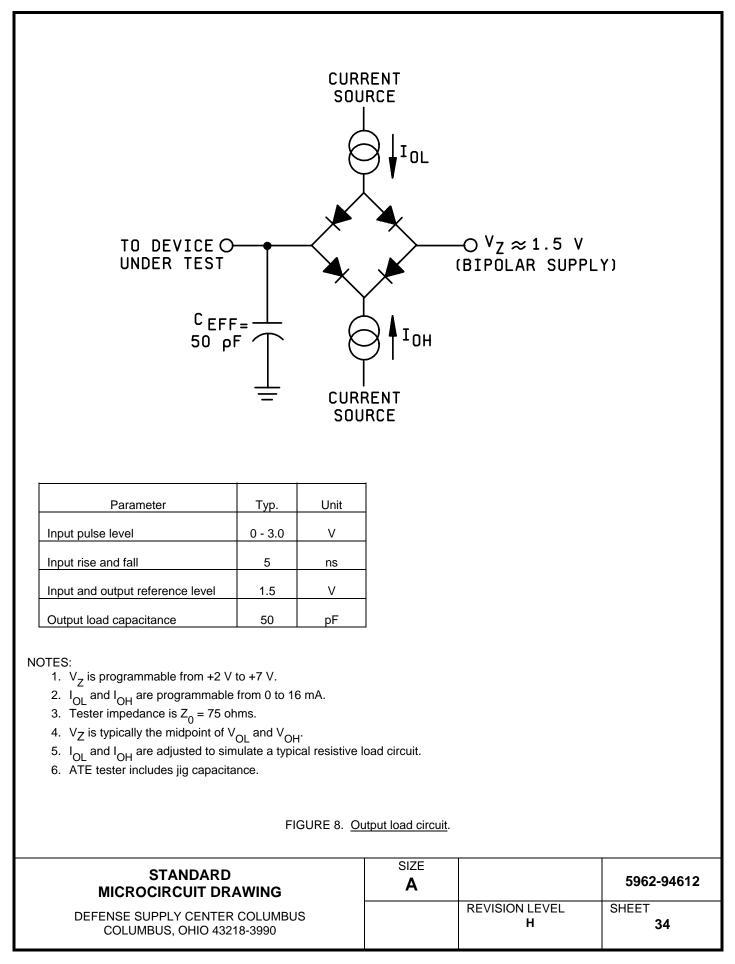

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	30


CS	ŌE	WE	I/O	MODE
V _{IL}	V _{IL}	V _{IH}	D _{OUT}	Read
V _{IH}	х	х	High Z	Standby
V _{IL}	V _{IH}	V _{IH}	High Z	Output disable
V _{IL}	V _{IH}	V _{IL}	D _{IN}	Write


NOTES:


- 1. V_{IH} = High Logic Level
- 2. V_{IL} = Low Logic Level
- 3. X = Do not care (either high or low)
- 4. High Z = High Impedance State





MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	1,4,7,9
Final electrical parameters	1,2,3,4,7,8A,8B,9,10,11
Group A test requirements	1*,2,3,4,7,8A,8B,9,10,11
Group C end-point electrical parameters	1,2,3,4,7,8A,8B,9,10,11
End-point electrical parameters for Radiation Hardness Assurance (RHA) devices	Not applicable

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

a. Burn-in test, method 1015 of MIL-STD-883.

- (1) Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
- (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.

b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. Tests shall be as specified in table II herein.

b. Subgroups 5 and 6 shall be omitted.

c. Subgroups 7 and 8 shall include verification of the truth table on figure 3.

4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	35

4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. End-point electrical parameters shall be as specified in table II herein.

b. Steady-state life test, method 1005 of MIL-STD-883.

- (1) Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
- (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
- (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94612
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	36

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 06-02-03

Approved sources of supply for SMD 5962-94612 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing	Vendor CAGE	Vendor similar
	0/10 =	
PIN <u>1</u> /	number	PIN <u>2</u> /
	0.5110.0	
5962-9461201HAA	0EU86	AS8F512K32Q1-150/883C
5962-9461201HAC	0EU86	AS8F512K32Q1-150/883C
5962-9461201HAA	54230	WF512K32-150G2LQ5
5962-9461201HAC	54230	WF512K32-150G2LQ5
5962-9461201HMA	0EU86	AS8F512K32Q-150/883C
5962-9461201HMA	54230	WF512K32-150G2Q5
5962-9461201HMA	88379	ACT-F512K32N-150F5Q
5962-9461201HMC	0EU86	AS8F512K32Q-150/883C
5962-9461201HMC	54230	WF512K32-150G2Q5
5962-9461201HMC	88379	ACT-F512K32N-150F5Q
5962-9461201HNC	54230	WF512K32F-150G4Q5
5962-9461201HTC	54230	WF512K32-150G4TQ5
5962-9461201HUA	54230	WF512K32N-150HQ5
5962-9461201HUA	88379	ACT-F512K32N-150P7Q
5962-9461201HUC	54230	WF512K32N-150HQ5
5962-9461201HUC	88379	ACT-F512K32N-150P7Q
5962-9461201HXA	88379	ACT-F512K32N-150P3Q
5962-9461201HXC	88379	ACT-F512K32N-150P3Q
5962-9461201HYC	88379	ACT-F512K32N-150F5UQ
5962-9461201HZA	54230	WF512K32-150G2UQ5
5962-9461201HZC	54230	WF512K32-150G2UQ5
5962-9461201H4A	0EU86	ASF512K32P-150/883C
5962-9461201H4A	54230	WF512K32N-150H1Q5
5962-9461201H4A	88379	ACT-F512K32A-150P7Q
5962-9461201H4C	0EU86	AS8F512K32P-150/883C
5962-9461201H4C	54230	WF512K32N-150H1Q5
5962-9461201H4C	88379	ACT-F512K32A-150P7Q
5962-9461201H9A	54230	WF512K32-150G1UQ5
5962-9461201H9C	54230	WF512K32-150G1UQ5
5962-9461201HBA	54230	WF512K32-150G1TQ5
5962-9461201HBC	54230	WF512K32-150G1TQ5

See Footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN - Continued.

DATE: 06-02-03

h	1	i
Standard microcircuit drawing	Vendor CAGE	Vendor similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9461202HAA	0EU86	ASF512K32Q1-120/883C
5962-9461202HAC	0EU86	ASF512K32Q1-120/883C
5962-9461202HAA	54230	WF512K32-120G2LQ5
5962-9461202HAC	54230	WF512K32-120G2LQ5
5962-9461202HMA	0EU86	ASF512K32Q-120/883C
5962-9461202HMA	54230	WF512K32-120G2Q5
5962-9461202HMA	88379	ACT-F512K32N-120F5Q
5962-9461202HMC	0EU86	ASF512K32Q-120/883C
5962-9461202HMC	54230	WF512K32-120G2Q5
5962-9461202HMC	88379	ACT-F512K32N-120F5Q
5962-9461202HNC	54230	WF512K32F-120G4Q5
5962-9461202HTC	54230	WF512K32-120G4TQ5
5962-9461202HUA	54230	WF512K32N-120HQ5
5962-9461202HUA	88379	ACT-F512K32N-120P7Q
5962-9461202HUC	54230	WF512K32N-120HQ5
5962-9461202HUC	88379	ACT-F512K32N-120P7Q
5962-9461202HXA	88379	ACT-F512K32N-120P3Q
5962-9461202HXC	88379	ACT-F512K32N-120P3Q
5962-9461202HYC	88379	ACT-F512K32N-120F5UQ
5962-9461202HZA	54230	WF512K32-120G2UQ5
5962-9461202HZC	54230	WF512K32-120G2UQ5
5962-9461202H4A	0EU86	ASF512K32P-120/883C
5962-9461202H4A	54230	WF512K32N-120H1Q5
5962-9461202H4A	88379	ACT-F512K32A-120P7Q
5962-9461202H4C	0EU86	ASF512K32P-120/883C
5962-9461202H4C	54230	WF512K32N-120H1Q5
5962-9461202H4C	88379	ACT-F512K32A-120P7Q
5962-9461202H9A	54230	WF512K32-120G1UQ5
5962-9461202H9C	54230	WF512K32-120G1UQ5
5962-9461202HBA	54230	WF512K32-120G1TQ5
5962-9461202HBC	54230	WF512K32-120G1TQ5

2 of 5

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN - Continued.

DATE: 06-02-03

	I	1
Standard microcircuit drawing	Vendor CAGE	Vendor similar
<u> </u>	number	PIN <u>2</u> /
	0.51.10.0	
5962-9461203HAA	0EU86	AS8F512K32Q1-90/883C
5962-9461203HAC	0EU86	AS8F512K32Q1-90/883C
5962-9461203HAA	54230	WF512K32-90G2LQ5
5962-9461203HAC	54230	WF512K32-90G2LQ5
5962-9461203HMA	0EU86	AS8F512K32Q-90/883C
5962-9461203HMA	54230	WF512K32-90G2Q5
5962-9461203HMA	88379	ACT-F512K32N-090F5Q
5962-9461203HMC	0EU86	AS8F512K32Q-90/883C
5962-9461203HMC	54230	WF512K32-90G2Q5
5962-9461203HMC	88379	ACT-F512K32N-090F5Q
5962-9461203HNC	54230	WF512K32F-90G4Q5
5962-9461203HTC	54230	WF512K32-90G4TQ5
5962-9461203HUA	54230	WF512K32N-90HQ5
5962-9461203HUA	88379	ACT-F512K32N-090P7Q
5962-9461203HUC	54230	WF512K32N-90HQ5
5962-9461203HUC	88379	ACT-F512K32N-090P7Q
5962-9461203HXA	88379	ACT-F512K32N-090P3Q
5962-9461203HXC	88379	ACT-F512K32N-090P3Q
5962-9461203HYC	88379	ACT-F512K32N-090F5UQ
5962-9461203HZA	54230	WF512K32-90G2UQ5
5962-9461203HZC	54230	WF512K32-90G2UQ5
5962-9461203H4A	0EU86	AS8F512K32P-90/883C
5962-9461203H4A	54230	WF512K32N-90H1Q5
5962-9461203H4A	88379	ACT-F512K32A-090P7Q
5962-9461203H4C	0EU86	AS8F512K32P-90/883C
5962-9461203H4C	54230	WF512K32N-90H1Q5
5962-9461203H4C	88379	ACT-F512K32A-090P7Q
5962-9461203H9A	54230	WF512K32-90G1UQ5
5962-9461203H9C	54230	WF512K32-90G1UQ5
5962-9461203HBA	54230	WF512K32-90G1TQ5
5962-9461203HBC	54230	WF512K32-90G1TQ5

3 of 5

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9461204HAA	0EU86	AS8F512K32Q1-70/883C
5962-9461204HAC	0EU86	AS8F512K32Q1-70/883C
5962-9461204HAA	54230	WF512K32-70G2LQ5
5962-9461204HAC	54230	WF512K32-70G2LQ5
5962-9461204HMA	0EU86	AS8F512K32Q-70/883C
5962-9461204HMA	54230	WF512K32-70G2Q5
5962-9461204HMA	88379	ACT-F512K32N-070F5Q
5962-9461204HMC	0EU86	AS8F512K32Q-70/883C
5962-9461204HMC	54230	WF512K32-70G2Q5
5962-9461204HMC	88379	ACT-F512K32N-070F5Q
5962-9461204HNC	54230	WF512K32F-70G4Q5
5962-9461204HTC	54230	WF512K32-70G4TQ5
5962-9461204HUA	54230	WF512K32N-70HQ5
5962-9461204HUA	88379	ACT-F512K32N-070P7Q
5962-9461204HUC	54230	WF512K32N-70HQ5
5962-9461204HUC	88379	ACT-F512K32N-070P7Q
5962-9461204HXA	88379	ACT-F512K32N-070P3Q
5962-9461204HXC	88379	ACT-F512K32N-070P3Q
5962-9461204HYC	88379	ACT-F512K32N-070F5UQ
5962-9461204HZA	54230	WF512K32-70G2UQ5
5962-9461204HZC	54230	WF512K32-70G2UQ5
5962-94612044HA	0EU86	AS8F512K32P-70/883C
5962-9461204H4A	54230	WF512K32N-70H1Q5
5962-9461204H4A	88379	ACT-F512K32A-070P7Q
5962-9461204H4C	0EU86	AS8F512K32P-70/883C
5962-9461204H4C	54230	WF512K32N-70H1Q5
5962-9461204H4C	88379	ACT-F512K32A-070P7Q
5962-9461204H9A	54230	WF512K32-70G1UQ5
5962-9461204H9C	54230	WF512K32-70G1UQ5
5962-9461204HBA	54230	WF512K32-70G1TQ5
5962-9461204HBC	54230	WF512K32-70G1TQ5

See footnotes at end of table.

4 of 5

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN - Continued.

DATE: 06-02-03

	1	
Standard microcircuit drawing	Vendor CAGE	Vendor similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9461205HAA	0EU86	AS8F512K32Q1-60/883C
5962-9461205HAC	0EU86	AS8F512K32Q1-60/883C
5962-9461205HAA	54230	WF512K32-60G2LQ5
5962-9461205HAC	54230	WF512K32-60G2LQ5
5962-9461205HMA	0EU86	AS8F512K32Q-60/883C
5962-9461205HMA	54230	WF512K32-60G2Q5
5962-9461205HMA	88379	ACT-F512K32N-060F5Q
5962-9461205HMC	0EU86	AS8F512K32Q-60/883C
5962-9461205HMC	54230	WF512K32-60G2Q5
5962-9461205HMC	88379	ACT-F512K32N-060F5Q
5962-9461205HNC	54230	WF512K32F-60G4Q5
5962-9461205HTC	54230	WF512K32-60G4TQ5
5962-9461205HUA	54230	WF512K32N-60HQ5
5962-9461205HUA	88379	ACT-F512K32N-060P7Q
5962-9461205HUC	54230	WF512K32N-60HQ5
5962-9461205HUC	88379	ACT-F512K32N-060P7Q
5962-9461205HXA	88379	ACT-F512K32N-060P3Q
5962-9461205HXC	88379	ACT-F512K32N-060P3Q
5962-9461205HYC	88379	ACT-F512K32N-060F5UQ
5962-9461205HZA	54230	WF512K32-60G2UQ5
5962-9461205HZC	54230	WF512K32-60G2UQ5
5962-9461205H4A	54230	WF512K32N-60H1Q5
5962-9461205H4A	88379	ACT-F512K32A-060P7Q
5962-9461205H4C	54230	WF512K32N-60H1Q5
5962-9461205H4C	88379	ACT-F512K32A-060P7Q
5962-9461205H9A	54230	WF512K32-60G1UQ5
5962-9461205H9C	54230	WF512K32-60G1UQ5
5962-9461205HBA	54230	WF512K32-60G1TQ5
5962-9461205HBC	54230	WF512K32-60G1TQ5

- The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor for its availability.
 <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the
- performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
0EU86	Austin Seminconductor Incorporated 8701 Cross Park Drive Austin, TX 78754-4566
54230	White Electronic Designs Corporation 3601 East University Drive Phoenix, AZ 85034-7217
88379	Aeroflex Circuit Technology 35 South Service Road Plainview NY, 11803-4193

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.