DEVICE ENGINEERING INCORPORATED

385 East Alamo Drive Chandler, AZ 85225 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

DEI1022, DEI1023 DEI1024, DEI1025 ARINC 429 Line Driver Integrated Circuit

Features:

- ARINC 429 Line Driver for high speed (100KHz) and low speed (12.5KHz) data rates.
- Adjustable Slew rates via external capacitors.
- Small foot print (14L SOIC NB)
- Programmable output differential range via V_{REF} pin.
- Drives full ARINC load of 400Ω and 0.03μ F.
- -55°C to +85°C operating temperature range.
- 100% Final testing.

Functional Description:

The ARINC 429 Line Driver Circuit is a bipolar monolithic IC designed to meet the requirements of several general aviation serial data bus standards. These include the differential bipolar RZ types such as ARINC 429, ARINC 571, and ARINC 575.

The DEI1023, DEI1023, DEI1024, and DEI1025 are a family of ARINC Line Driver circuits with variations in driver output resistance and output fusing. See the Product Matrix definition table below to find the correct version for your application.

Serial data is presented on DATA(A) and DATA(B) logic inputs in the dual rail format of the DEI1016. The driver is enabled by the SYNC and CLOCK inputs. The output voltage level is programmed by the V_{REF} input and is normally tied to +5VDC along with V_1 to produce output levels of +5 volts, 0 volts, and -5 volts on each output for ± 10 volts differential outputs.

The driver output resistance of the DEI1022 and DEI1023 is 75 Ω $\pm 20\%$ at room temperature; 37.5 Ω on each output. The driver output resistance of the DEI1024 and the DEI1025 is zero. The output slew rate is controlled by external timing capacitors on C_A and C_B . Typical values are 75pF for 100KHz and 500pF for 12.5KHz data.

Table 1: Product Matrix					
Part Number	Output Fusing	Output Resistance (each output)			
DEI 1022	NO	37.5 Ω			
DEI 1023	YES	37.5 Ω			
DEI 1024	NO	0 Ω			
DEI 1025	YES	0 Ω			

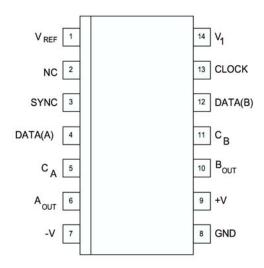
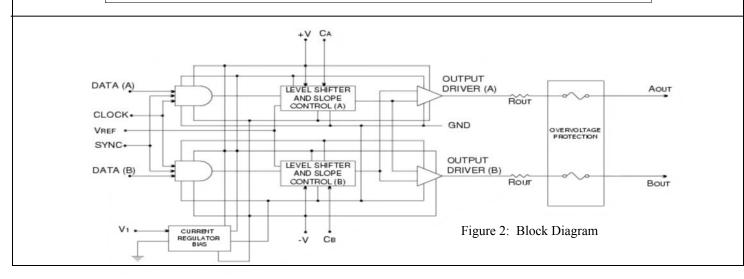


Figure 1: Pinout Diagram


Pin #	Pin Name	Table 2: Pin Descriptions					
1	$ m V_{REF}$	Analog Input. The voltage on V_{REF} sets the output voltage levels on A_{OUT} and B_{OUT} . The output logic levels swing between $+V_{REF}$, 0 volts, and $-V_{REF}$ volts.					
2	NC	No Connect					
3	SYNC	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.					
13	CLOCK	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.					
4 12	DATA(A) DATA(B)	Logic inputs. These signals contain the Serial Data to be transmitted on the ARINC 429 data bus. Refer to Figure 3.					
5 11	$egin{array}{c} C_A \ C_B \end{array}$	Analog Nodes. External timing capacitors are tied from these points to ground to establish the output signal slew rate. Typical $C_A = C_B = 75 pF$ for 100 kHz data and $C_A = C_B = 500 pF$ for 12.5 kHz data. *					
6 10	$egin{array}{c} A_{OUT} \ B_{OUT} \end{array}$	Outputs. These are the line driver outputs which are connected to the aircraft serial data bus.					
7	-V	Negative Supply Input. –15VDC nominal.					
8	GND	Ground.					
9	+V	Positive Supply Input. +15VDC nominal.					
14	V_1	Logic Supply Input. +5VDC nominal.					
*C an	*C. and C. nin valtages swing between +5 valts. Any electronic switching of the canacitor on the nins must not inhibit the full valtage swings						

^{*}C_A and C_B pin voltages swing between ±5 volts. Any electronic switching of the capacitor on the pins must not inhibit the full voltage swings.

Table 3: Truth Table								
	INPU	TS	OUT	PUTS				
SYNC NOTE 1			A _{OUT}	B _{OUT}	COMMENTS			
L	X	X	X	0	0	NULL		
X	L	X	X	0	0	NULL		
Н	Н	L	L	0	0	NULL		
Н	Н	Н	Н	0	0	NULL		
Н	Н	Н	L	$+V_{REF}$	$-V_{REF}$	LOGIC 1		
Н	Н	L	Н	$-V_{REF}$	$+V_{REF}$	LOGIC 0		

NOTES:

1. X = Don't Care

Table 4: Absolute Maximum Ratings							
PARAMETER	SYMBOL	RATING	UNITS				
Voltage between pins +V and –V		40	V				
V₁ Maximum Voltage	V ₁	7	V				
V _{REF} Maximum Voltage	V_{REF}	6	V				
Logic Inputs		(GND-0.3V) to (V1 + 0.3V)	V				
Peak Body Temperature Non-G Part -G Part	-	240 260	°C				
Storage Temperature	T _{STG}	-65 to +150	°C				
Max Junction Temperature Die Limit (short term operation)	T _{J MAX1}	+175	°C				
Max Junction Temperature Plastic Package Limit (prolonged operation)	T _{J MAX2}	+145	°C				
Output Short Circuit Duration	See Note 1						
Output Over-Voltage Protection	See Note 2						
Power Dissipation	See Table 6						

Notes:

^{2.} Both DEI1023 and DEI1025 outputs are fused at between 0.5 Amp DC and 1.0 Amp DC to prevent an over-voltage fault from coupling onto the system power bus. The DEI1022 and DEI1024 outputs are not fused. External fusing must be provided to meet the Transmitter Fault Isolation of the ARINC 429 Specification.

Table 5: Operating Range										
PARAMETER SYMBOL MIN TYP MAX UNIT										
Positive Supply Voltage	+V	+11.4		+16.5	VDC					
Negative Supply Voltage	-V	-11.4		-16.5	VDC					
V_1	V ₁	+4.75	+5	+5.25	VDC					
V _{REF} (For ARINC 429)	V_{REF}	+4.75	+5	+5.25	VDC					
V _{REF} (For other applications)	V_{REF}	+3		+6	VDC					
Operating Temperature	T _A	-55		+85	°C					

Thermal Management

Device power dissipation varies greatly as a function of data rate, load capacitance, data duty cycle, and supply voltage. Proper thermal management is important in designs operating at the HI speed data rate (100KBS) with high capacitive loads and high data duty cycles.

Power dissipation may be estimated from Table 6 "Power Dissipation Table". Device power dissipation (Pd) is indicated for 100% data duty cycle with no word gap null times and should be adjusted for the appropriate data duty cycle (DC). Pd(application) = DC * [Pd(table) - 145mW] + 145mW, where DC is the application data duty cycle, Pd(table) is the Pd from the table for the indicated data rate and bus load, and 145mW is the quiescent power. The application's data duty cycle (DC) for 100KBS operation is calculated as:

DC = (total bits transmitted in 10 sec period / 1,000,000) = (32 x total ARINC words transmitted in 10 sec period / 1,000,000).

Heat transfer from the IC package should be maximized. Use maximum trace width on all power and signal connections at the IC. Place vias on the signal/power traces close to the IC to maximize heat flow to the internal power planes. If possible, design a solid heat spreader land under and beyond the IC to maximize heat flow from the device.

One output at a time can be shorted to ground indefinitely. Both outputs can be shorted indefinitely to ground or to each
other for T_A < 45° C and Data Duty Cycle < 40%.

Table 6: Power Dissipation Table									
10	100% Duty Cycle, Full Load = 400Ω/30,000pF Half Load = 4,000Ω/10,000pF								
DATA RATE	DATA RATE LOAD +V @ 15V -V @ -15V V ₁ , V _{REF} @ 5V POWER POWER								
0 to 100kbps	NONE	2.0mA	-5.0mA	4mA	125mW	0.0mW			
12.5kbps	FULL	16.0mA	19.0mA	4mA	485mW	60.0mW			
100kbps FULL 48.0mA 51.0mA 4mA 1194mW * 325.0m						325.0mW			
12.5kbps	12.5kbps HALF 6.0mA 8.0mW 4mA 196mW 30.0mW								
100kbps	100kbps HALF 22.0mA 25.0mA 4mA 561mW 162.5mW								
* May require h	neat sink @ T _A	= +85 °C							

Table 7: DC Electrical Characteristics

Conditions: Temperature: -55° C to $+85^{\circ}$ C +V = +11 4VDC to +16 5VDC -V = -11 4VDC to -16 5VDC: V_{4} = V_{DEE} = +5VDC +5%

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
IQ+V	Quiescent +V supply current	-	2	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQ-V	Quiescent -V supply current	-	5	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQV ₁	Quiescent V ₁ supply current	-	4	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQV_{REF}	Quiescent V _{REF} supply current	-	10	-	μА	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
V_{IH}	Logic 1 Input V	2.0	-	1	V	No Load.
V_{IL}	Logic 0 Input V	-	-	0.6	V	No Load.
I _{IH}	Logic 1 Input I	-	-	10	μΑ	No Load.
I _{IL}	Logic 0 Input I	-	-	-20	μА	No Load. (429/422´ Pin I _{IL} = -2mA ma:
I _{OHSC}	Output Short Circuit Current (Output High)	-80	-	-	mA	Short to Ground
I _{OLSC}	Output Short Circuit Current (Output Low)	80	-	1	mA	Short to Ground
V_{OH}	Output Voltage HIGH. (+1)	V _{REF} - 250mV	V _{REF}	V _{REF} + 250mV	V	No Load. 429 Mode.
V_{NULL}	Output Voltage NULL. (0)	-250	-	+250	mV	No Load. 429 Mode.
V_{OL}	Output Voltage LOW. (-1)	-V _{REF} – 250mV	-V _{REF}	-V _{REF} + 250mV	V	No Load. 429 Mode.
I _{CT} + -	Timing Capacitor Charge Current C _A (+1) C _B (-1) C _A (-1) C _B (+1)	-	+200 -200	-	μ Α μ Α	No Load. 429 Mode. SYNC = CLOCK = HIGH C_A and C_B held at zero volts.
ISC (+V)	+V Short Circuit Supply Current	-	-	+150	mA	Output short to ground
ISC (-V)	-V Short Circuit Supply Current	-	-	-150	mA	Output short to ground
R _{out}	Resistance on each output	-	SeeNotes	-	Ω	Room Temp Only
C _{IN}	Input Capacitor	-	-	15	pF	-

Notes: For DEI1022 and DEI1023, the typical resistance on each output is 37.5 Ω . For DEI1024 and DEI1025, the resistance on each output is 0 Ω .

AC ELECTRICAL CHARACTERISTICS

Figure 3 shows the output waveform for the ARINC 429.

The output slew rates are controlled by timing capacitors C_A and C_B . They are charged by $\pm 200 \mu A$ (nom.). Slew rate (SR) measured as $V/\mu sec$, is calculated by:

SR = 200/C where C is in pF.

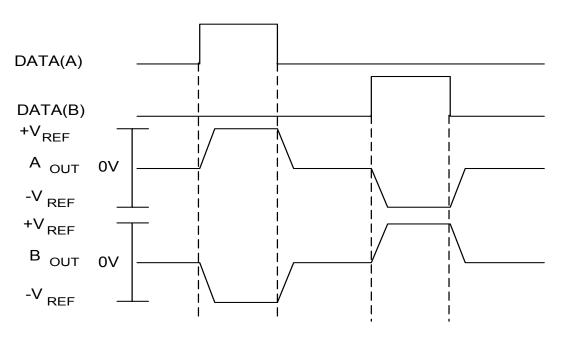
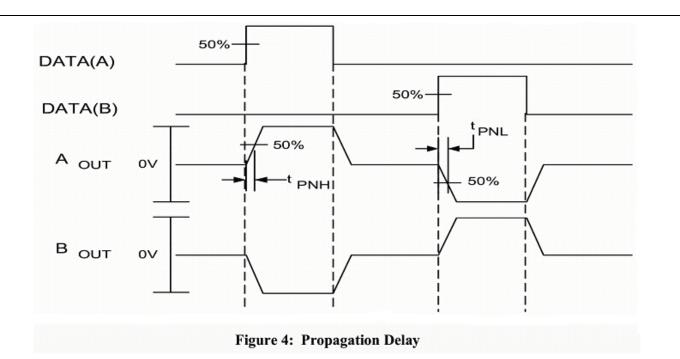
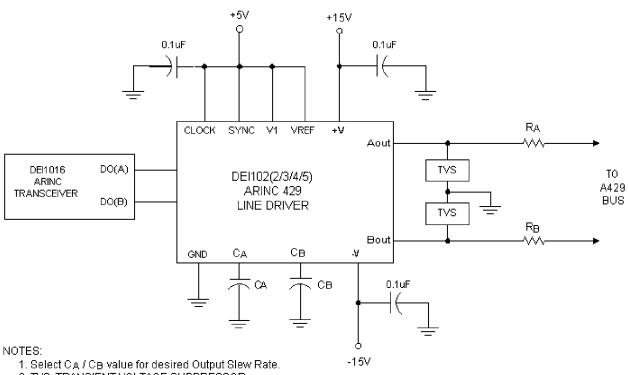




Figure 3: ARINC 429 Waveforms

Table 8: AC Electrical Characteristics									
Parameter	Symbol	MIN	MAX	UNITS	NOTES				
Output Rise Time $A_{OUT} \text{ or } B_{OUT}$ $C_A = C_B = 75 \text{pF}$ $C_A = C_B = 500 \text{pF}$	t _R	1.0 5.0	2.0 15.0	μsec μsec	5V 90% OV 10% R				
Output Fall Time $A_{OUT} \text{ or } B_{OUT} \\ C_A = C_B = 75 \text{pF} \\ C_A = C_B = 500 \text{pF}$	t _F	1.0 5.0	2.0 15.0	μsec μsec	0V 90%				
Input to Output Propagation Delay	$t_{ m PNH} \ t_{ m PNL}$	-	3.0	μsec	See Figure 4				
A _{OUT} / B _{OUT} Skew Spec.	-	-	500	nsec					

- 2. TVS: TRANSIENT VOLTAGE SUPPRESSOR.
- 3. RA / RB : Use 37 Ohm for DEI102(4/5). Use Zero Ohm for DEI102(2/3).

Figure 5: Typical Application

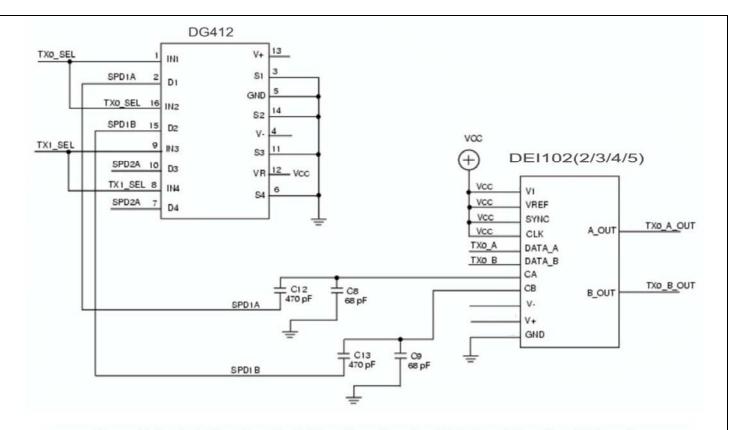


Figure 6: Typical Circuitry- Switching Capacitors For High-Speed/Low-Speed Operation

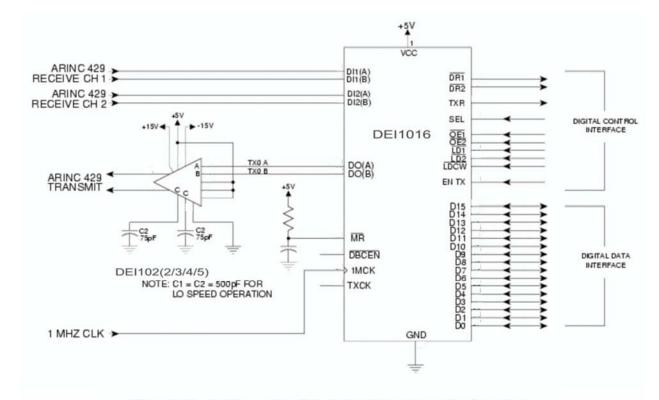


Figure 7: Typical Transceiver/Line Driver Interconnect Configuration

Table 9: Package Characteristics Table						
PACKAGE TYPE	14 Lead SOIC Narrow Body, Green					
REFERENCE	14L SOIC NB G					
THERMAL RESISTANCE:						
θ_{JA} (2 layer PCB)	115 °C/W					
θ_{JA} (4 layer PCB with Power Planes)	88 °C/W					
$\theta_{ m JC}$	37 °C/W					
JEDEC MOISTURE SENSITIVITY LEVEL (MSL)	MSL 1 / 260°C					
LEAD FINISH MATERIAL / JEDEC Pb-free CODE	NiPdAu e4					
Pb-Free DESIGNATION	RoHS Compliant					
JEDEC REFERENCE	MS-012-AB					

Table 10: Screening Process					
SCREENING METHODS					
ELECTRICAL TEST:					
ROOM TEMPERATURE	100%				
HIGH TEMPERATURE	100% @ +125 °C				
LOW TEMPERATURE	0.65% AQL@-55°C				

Table 11: Ordering Information									
DEI PART NUMBER	MARKING (1)	PACKAGE	TEMPERATURE RANGE	OUTPUT RESISTOR	OUTPUT FUSE				
DEI1022-G	DEI1022								
	E4	14 SOIC NB G	-55 / +85 °C	37.5Ω	NO				
DEI1023-G	DEI1023								
	E4	14 SOIC NB G	-55 / +85 °C	37.5Ω	YES				
DEI1024-G	DEI1024								
	E4	14 SOIC NB G	-55 / +85 °C	Ω Ω	NO				
DEI1025-G	DEI1025								
	E4	14 SOIC NB G	-55 / +85 °C	Ω Ω	YES				
Notes:	•		•						

^{1.} All packages marked with Lot Code and Date Code. "E4" after Date Code denotes Pb Free category.

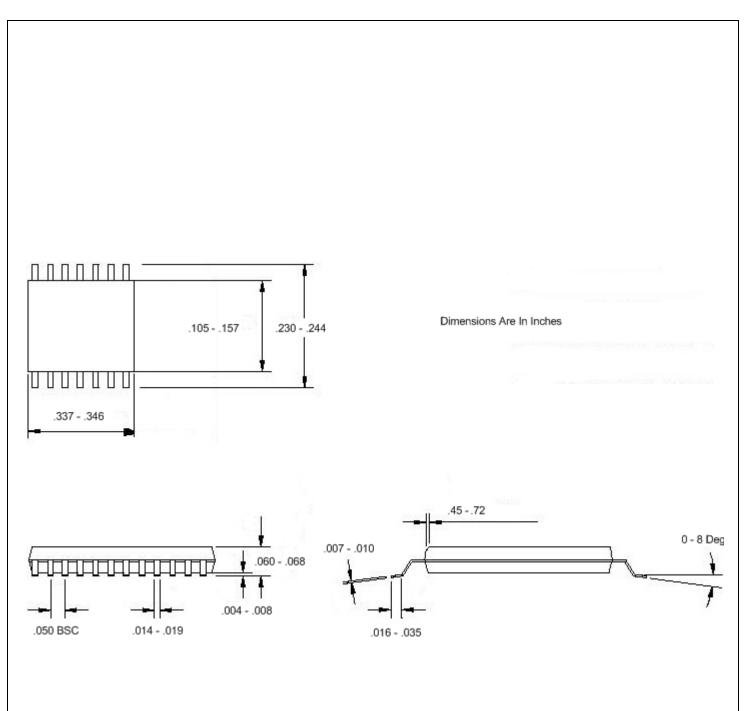


Figure 8: Package Dimensions 14 Lead SOIC Narrow Body - G Package

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.