# 2N3019, 2N3019S, 2N3700

# **Low Power Transistors**

# **NPN Silicon**

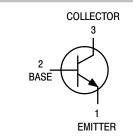
## Features

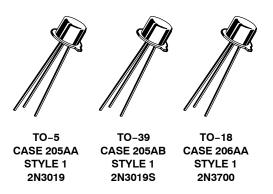
- MIL-PRF-19500/391 Qualified
- Available as JAN, JANTX, and JANTXV

### **MAXIMUM RATINGS** (T<sub>A</sub> = $25^{\circ}$ C unless otherwise noted)

|                                                                               |                                   | -              |      |
|-------------------------------------------------------------------------------|-----------------------------------|----------------|------|
| Characteristic                                                                | Symbol                            | Value          | Unit |
| Collector – Emitter Voltage                                                   | V <sub>CEO</sub>                  | 80             | Vdc  |
| Collector – Base Voltage                                                      | V <sub>CBO</sub>                  | 140            | Vdc  |
| Emitter-Base Voltage                                                          | V <sub>EBO</sub>                  | 7.0            | Vdc  |
| Collector Current – Continuous                                                | Ι <sub>C</sub>                    | 1.0            | Adc  |
| Total Device Dissipation @ T <sub>A</sub> = 25°C<br>2N3019, 2N3019S<br>2N3700 | P <sub>T</sub>                    | 800<br>500     | mW   |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>2N3019, 2N3019S<br>2N3700 | P <sub>T</sub>                    | 5.0<br>1.0     | W    |
| Operating and Storage Junction<br>Temperature Range                           | T <sub>J</sub> , T <sub>stg</sub> | -65 to<br>+200 | °C   |

### THERMAL CHARACTERISTICS


| Characteristic                                                       | Symbol         | Max        | Unit |
|----------------------------------------------------------------------|----------------|------------|------|
| Thermal Resistance, Junction to Ambient<br>2N3019, 2N3019S<br>2N3700 | $R_{	hetaJA}$  | 195<br>325 | °C/W |
| Thermal Resistance, Junction to Case<br>2N3019, 2N3019S<br>2N3700    | $R_{	heta JC}$ | 30<br>150  | °C/W |


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



## **ON Semiconductor®**

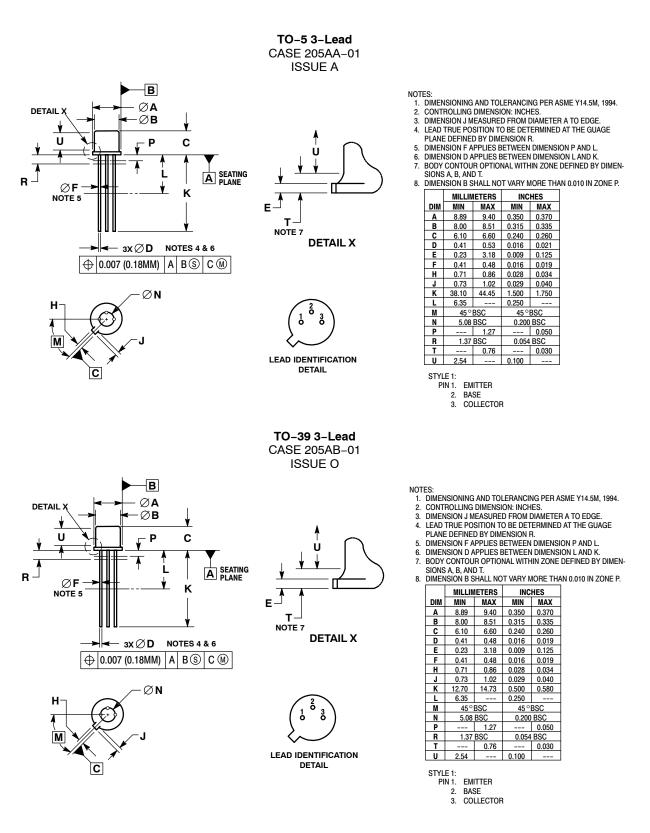
http://onsemi.com





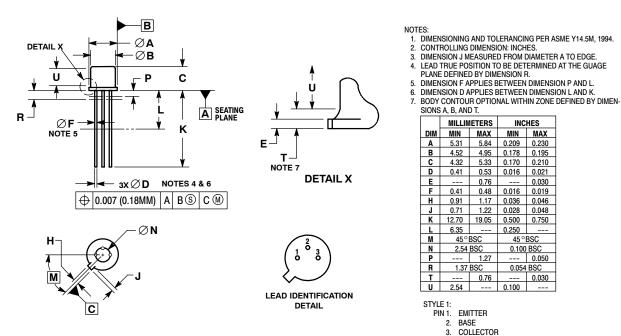
### **ORDERING INFORMATION**

| Device        | Package | Shipping |
|---------------|---------|----------|
| JAN2N3019     |         |          |
| JANTX2N3019   | TO-5    | Bulk     |
| JANTXV2N3019  |         |          |
| JAN2N3019S    |         |          |
| JANTX2N3019S  | TO-39   | Bulk     |
| JANTXV2N3019S |         |          |
| JAN2N3700     |         |          |
| JANTX2N3700   | TO-18   | Bulk     |
| JANTXV2N3700  |         |          |


# 2N3019, 2N3019S, 2N3700

### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                 | Symbol                             | Min                         | Max                         | Unit         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                            | ł                                  |                             |                             |              |
| Collector – Emitter Breakdown Voltage $(I_C = 30 \text{ mAdc})$                                                                                                                                                                                                                                                                                                                                | V <sub>(BR)CEO</sub>               | 80                          | _                           | Vdc          |
| Emitter-Base Cutoff Current<br>( $V_{EB} = 5.0 \text{ Vdc}$ )<br>( $V_{EB} = 7.0 \text{ Vdc}$ )                                                                                                                                                                                                                                                                                                | IEBO                               |                             | 10<br>10                    | nAdc<br>µAdc |
| Collector-Emitter Cutoff Current<br>(V <sub>CE</sub> = 90 Vdc)                                                                                                                                                                                                                                                                                                                                 | ICES                               | _                           | 10                          | nAdc         |
| Collector-Base Cutoff Current<br>(V <sub>CB</sub> = 140 Vdc)                                                                                                                                                                                                                                                                                                                                   | I <sub>CBO</sub>                   | _                           | 10                          | μAdc         |
| ON CHARACTERISTICS (Note 1)                                                                                                                                                                                                                                                                                                                                                                    |                                    | •                           |                             |              |
| $ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}) \end{array} $ | h <sub>FE</sub>                    | 50<br>90<br>100<br>50<br>15 | 300<br>-<br>300<br>300<br>- | _            |
| Collector – Emitter Saturation Voltage<br>( $I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$ )<br>( $I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$ )                                                                                                                                                                                                                                           | V <sub>CE(sat)</sub>               |                             | 0.2<br>0.5                  | Vdc          |
| Base – Emitter Saturation Voltage<br>(I <sub>C</sub> = 150 mAdc, I <sub>B</sub> = 15 mAdc)                                                                                                                                                                                                                                                                                                     | V <sub>BE(sat)</sub>               | _                           | 1.1                         | Vdc          |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                   |                                    |                             |                             |              |
| Magnitude of Small–Signal Current Gain<br>(I <sub>C</sub> = 50 mAdc, V <sub>CE</sub> = 10 Vdc, f = 20 MHz)                                                                                                                                                                                                                                                                                     | h <sub>fe</sub>                    | 5.0                         | 20                          | _            |
| Small–Signal Current Gain<br>(I <sub>C</sub> = 1.0 mAdc, V <sub>CE</sub> = 5 Vdc, f = 1 kHz)                                                                                                                                                                                                                                                                                                   | h <sub>fe</sub>                    | 80                          | 400                         | _            |
| Output Capacitance (V <sub>CB</sub> = 10 Vdc, I <sub>E</sub> = 0, 100 kHz $\leq$ f $\leq$ 1.0 MHz)                                                                                                                                                                                                                                                                                             | C <sub>obo</sub>                   | -                           | 12                          | pF           |
| Input Capacitance (V <sub>EB</sub> = 0.5 Vdc, $I_C$ = 0, 100 kHz $\leq$ f $\leq$ 1.0 MHz)                                                                                                                                                                                                                                                                                                      | C <sub>ibo</sub>                   | _                           | 60                          | pF           |
| Noise Figure (V <sub>CE</sub> = 10 Vdc, I <sub>C</sub> = 100 $\mu$ Adc, R <sub>g</sub> = 1 kΩ, PBW = 200 Hz)                                                                                                                                                                                                                                                                                   | NF                                 | -                           | 4.0                         | dB           |
| Collector-Base Time Constant $(V_{CB} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 79.8 \text{ MHz})$                                                                                                                                                                                                                                                                                          | r' <sub>b</sub> ,C <sub>C</sub>    | _                           | 400                         | ps           |
| SWITCHING CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                      |                                    |                             |                             |              |
| Pulse Response<br>(Reference Figure in MIL-PRF-19500/391)                                                                                                                                                                                                                                                                                                                                      | t <sub>on</sub> + t <sub>off</sub> | _                           | 30                          | ns           |
| Pulse Test: Pulse Width = 300 us. Duty Cycle < 2.0%                                                                                                                                                                                                                                                                                                                                            | 1                                  |                             |                             | •            |


1. Pulse Test: Pulse Width = 300  $\mu s,$  Duty Cycle  $\leq$  2.0%.

### PACKAGE DIMENSIONS



#### PACKAGE DIMENSIONS

TO-18 3-Lead CASE 206AA-01 ISSUE O



ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death application Equation where negarding the design or maunfacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

### ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative