Schottky Barrier Beam Lead and Packaged Ring Quads V3.00 #### **Features** - Small Physical Size for Microstrip Mounting - High Reliability - Closely Matched Junctions for High Isolation - High Barriers for LO Power Levels up to +27 dBm - Minimum Parasitics for Broadband Designs # **Description** ### Single Barrier Ring Quads Each Schottky barrier diode quad consists of four closely matched diodes connected in a ring configuration. The four diodes are formed monolithically to assure close matching of electrical characteristics: capacitance, forward voltage and series resistance. The beam lead construction assures minimum junction capacitance, minimum connection lead inductance and permits the interconnection of the diodes into rings at the wafer level. ### **Dual Barrier Ring Quads** Each dual barrier ring quad consists of eight Schottky diodes connected in a ring configuration. Each arm of the quad consists of two high barrier Schottky diodes. The structure is formed monolithically to assure close matching of electrical characteristics. They are available in the low cost 1008 package. ### **Medium Barrier Cross-Over Quads** M/A-COM's ring quads are available in beam lead form and five stripline case styles which are compatible with microstrip assembly techniques. The 226 case style is hermetically sealed and should be used in either harsh environments or high reliability military systems. The 228 case style is a low-cost package of similar size to the 226 case style. Case style 227 is suggested for either high frequency or wide bandwidth applications. Case style 963 has the lowest parasitics and is suggested for widest bandwidth applications. Case style 1008 is a low cost moderate frequency package used in many double balanced mixers through 2 GHz. ## **Case Styles** 264 1008 nc ope Specifications Subject to Change Without Notice 1 # Specifications @ $T_A = +25^{\circ}C$ | Model ⁴
Number | Frequency
Band | Maximum
Capacitance
C _j
(pF) | Maximum¹
Capacitance
Difference
△C _T
(pF) | Typical ²
Forward
Voltage
V _F
(Volts) | Maximum²
Forward
Voltage
Difference
∆V _F
(Volts) | Maximum ³
Series
Resistance
R _S
(Ohms) | |--|------------------------|--|--|---|--|--| | Barrier Ring Q | uads | | | | | • | | MA40430 | L-S | 0.55 | 0.10 | 0.25 | 0.02 | 7 | | MA40431 | L-S | 0.40 | 0.10 | 0.25 | 0.02 | 7 | | MA40432 | L-S | 0.50 | 0.10 0.25 | | 0.02 | 7 | | MA40439 | L-S | 0.50 | 0.20 | 0.25 | 0.02 | 7 | | MA40433 | С | 0.30 | 0.05 | 0.27 | 0.02 | 10 | | MA40437 | C-X | 0.25 | 0.10 | 0.27 | 0.02 | 10 | | MA40435 | Х | 0.20 | 0.05 | 0.30 | 0.02 | 12 | | MA40284 | X-Ku | 0.10 | 0.05 | 0.31 | 0.02 | 18 | | | | | | | I | 1 | | ium Barrier Rin
MA40440 | g Quads
L-S | 0.50 | 0.10 | 0.35 | 0.02 | 7 | | | | 0.50 | 0.10 | 0.35
0.35 | 0.02 | 7 7 | | MA40440 | L-S | | | | | | | MA40440
MA40442 | L-S
L-S | 0.50 | 0.10 | 0.35 | 0.02 | 7 | | MA40442
MA40449 | L-S
L-S
L-S | 0.50
0.50 | 0.10 | 0.35
0.35 | 0.02 | 7 | | MA40442
MA40449
MA40443 | L-S
L-S
L-S | 0.50
0.50
0.30 | 0.10
0.20
0.05 | 0.35
0.35
0.37 | 0.02
0.02
0.02 | 7
7
10 | | MA40440
MA40442
MA40449
MA40443
MA40444 | L-S
L-S
L-S
C | 0.50
0.50
0.30
0.30 | 0.10
0.20
0.05
0.10 | 0.35
0.35
0.37
0.37 | 0.02
0.02
0.02
0.02 | 7
7
10
10 | | MA40440
MA40442
MA40449
MA40443
MA40444
MA40446 | L-S
L-S
C
C | 0.50
0.50
0.30
0.30
0.20 | 0.10
0.20
0.05
0.10
0.05 | 0.35
0.35
0.37
0.37
0.41 | 0.02
0.02
0.02
0.02
0.02 | 7
7
10
10
10 | ### Notes: MA40499 MA40493 MA40496 MA40497 MA40286 - 1. C_T is measured across diagonal contacts. ΔC_T is measured across adjacent contacts. Capacitance is measured at zero bias and 1 MHz. - 2. V_F and ΔV_F are measured across adjacent contacts at $I_F = 1$ mA. L-S С Х Ku X-Ku 0.50 0.30 0.20 0.15 0.10 Series resistance, R_S, is determined by subtracting the junction resistance, R_i, from the measured value of dynamic (slope) resistance, R_T: 0.02 0.02 0.02 0.02 0.02 $R_S' = R_T - R_i$ Ohms Junction resistance is computed from: 0.55 0.57 0.61 0.61 0.61 $R_{\rm j} = 26/I_{\rm F}$ Ohms IF is the forward current in mA. Áll of these parts are available in case styles 226, 227, 228, 264, 963 and 1008. To order add case style as suffix i.e., MA40430-1008. Specifications Subject to Change Without Notice. _ M/A-COM, Inc. 7 10 12 12 18 North America: Tel. (800) 366-2266 Fax (800) 618-8883 ■ Asia/Pacific: Tel. +81 (03) 3226-1671 0.20 0.05 0.05 0.05 0.05 Europe: Tel. +44 (1344) 869 595 Fax +44 (1344) 300 020 Fax +81 (03) 3226-1451 # Specifications @ $T_A = +25^{\circ}C$ (Cont'd) ### **Dual High Barrier Beam Lead Ring Quads** | Model ⁵
Number | Frequency
Band | | J | Maximum³
Junction
Capacitance
Difference
△C _j
(pF) | Typical²
Resistance
R _T
(Ω) | Typical⁴
Forward
Voltage
V _F
(V) | Maximum⁴
Forward
Voltage
Difference
△V _F
(V) | |------------------------------|-------------------|------|------|--|---|---|--| | MA40482 | S | 0.20 | 0.30 | 0.10 | 14 | 1.10 | 0.020 | | MA40483 | Х | 0.12 | 0.20 | 0.10 | 20 | 1.14 | 0.020 | #### Notes: - 1. CJ is measured across diagonal leads at $V_{\rm Pl}$ = 0V and f = 1 MHz. $C_{\rm j}$ is comprised of the capacitance of two diode junctions in series. - 2. R_S is the diode series resistance which is the dynamic resistance, R_T , minus the junction resistance, R_j . The junction resistance is $R_j = 26 I_F$ is the DC bias current expressed in milliamperes. R_T is measured for $I_F = 10$ mA and the junction resistance, R_j , is subtracted from R_T to determine R_S , R_S is measured across adjacent quad leads and it is comprised of the series resistance of two diode junctions in series. - 3. ΔC_{j} is measured across adjacent quad leads at V_{R} = 0V and f = 1 MHz. - V_F and ΔV_F are measured across adjacent quad leads at I_F = 1.0 mA. V_E is comprised of the forward voltage of two diode junctions in series. - All of these parts are available in case styles 226, 228, 264, 963 and 1008. To order add case style as suffix to the part number, i.e., MA40482-1008. #### Medium Barrier Crossover Quads | Model
Number | Case
Style | Frequency
Band | Total¹
Capacitance
C _T
(pF) | Maximum¹
Total
Capacitance
Difference
ΔC _T
(pF) | Maximum²
Series
Resistance
R _S
(Ohms) | Typical ^s
Forward
Voltage
V _F
(Volts) | Maximum³
Forward
Voltage
Difference
ΔV _F
(Volts) | |-----------------|---------------|-------------------|---|---|--|---|--| | MA40472 | 1008 | L | 1.20 | 0.10 | 7 | 0.330 | 0.020 | | MA40471 | 1008 | S | 0.60 | 0.10 | 7 | 0.350 | 0.020 | #### Notes: - 1. C_T and ΔC_T are measured across adjacent leads 1-4 and 2-3 at $V_B^{}=$ 0V and f = 1 MHz. - 2. $R_S^{'}$ is the diode series resistance which is the dynamic resistance R_T minus the junction resistance R_j . The junction resistance is $R_j = 26/l_F$ where l_F is the DC bias current expressed in milliamperes. $R_T^{'}$ is measured for $l_F = 10$ mA and the junction resistance, R_j , is subtracted form $R_T^{'}$ to determine $R_S^{'}$. $R_S^{'}$ is calculated across leads 1-2, 2-4, 3-4 and 1-3. $(R_S^{'} = R_T^{'} R_j^{'})$ - 3. V_F and ΔV_F are measured across adjacent leads at $I_F = 1$ mA. # SINGLE BARRIER RING QUAD CIRCUIT TOP VIEW PACKAGED # DUAL BARRIER RING QUAD CIRCUIT TOP VIEW #### CROSS-OVER QWUAD CIRCUIT TOP VIEW PACKAGED Specifications Subject to Change Without Notice. M/A-COM, Inc. North America: Tel. (800) 366-2266 Fax (800) 618-8883 Asia/Pacific: Tel. +81 (03) 3226-1671 Fax +81 (03) 3226-1451 Europe: Tel. +44 (1344) 869 595 Fax +44 (1344) 300 020 **3** 595 # Absolute Maximum Ratings at 25°C | Parameter | Absolute Maximum | |--|------------------------------------| | Operating and Storage | | | Temperature Range of Junctions | -65°C to +150°C (Case Style 226) | | | -65°C to +125°C | | | (Case Style 227, 228, 963, 1008) | | Maximum Power Dissipation (derate linearly to zero allowable | | | dissipation at 150°C) | 75 mW/junction | | Soldering Temperature | 235°C for 10 sec. (Case Style 226) | | (Plastic Packages) | 150 °C for 5 sec. | | | (Case Styles 227, 228, 963, 1008) | | Beam Strength | 2g (Case Styles 264 and 905) | Specifications Subject to Change Without Notice. M/A-COM, Inc. North America: Tel. (800) 366-2266 Fax (800) 618-8883 Asia/Pacific: Tel. +81 (03) 3226-1671 Fax +81 (03) 3226-1451 Europe: Tel. +44 (1344) 869 595 Fax +44 (1344) 300 020