

Rad-hard precision bipolar single operational amplifier

Datasheet - production data

Features

- Rail-to-rail output
- Bandwidth: 8 MHz gain at 16 V
- Low input offset voltage: 100 µV typ
- Supply current: 2.2 mA typ
- Operating from 3 to 16 V
- Input bias current: 30 nA typ
- ESD internal protection ≥ 2 kV
- Latch-up immunity: 200 mA
- ELDRS free up to 300 krad
- SEL immune at 120 MEV.cm²/mg

Applications

- Space probes and satellites
- Defense systems
- Scientific instrumentation
- Nuclear systems

Description

The RHF43B is a precision, bipolar operational amplifier available in a ceramic Flat-8 package and in die form. In addition to its low offset voltage, rail-to-rail feature, and wide supply voltage, the RHF43B is designed for increased tolerance to radiation. Its intrinsic ELDRS-free rad-hard design allows this product to be used in space applications and in applications operating in harsh environments.

Table 1: Device summary						
Parameter	RHF43BK1	RHF43BK-01V				
SMD ⁽¹⁾	—	5962F06237				
Quality level	Engineering model	QML-V flight				
Package Mass	Flat-6 0.45	8 g				
EPPL ⁽²⁾	—	Yes				
Temp. range	-55 °C to 1	125 °C				

Notes:

⁽¹⁾SMD: supplier manufacturing drawing

⁽²⁾EPPL = ESA preferred part list

Contact your ST sales office for information on the specific conditions for products in die form and QML-Q versions.

March 2015

DocID13477 Rev 11

This is information on a product in full production.

Contents

1	Absolut	te maximum ratings and operating conditions	3
2	Electric	al characteristics	4
3	Radiatio	ons	12
	3.1	Introduction	12
	3.2	Total ionizing dose (TID)	12
	3.3	Heavy ions	12
4	Achievi	ng good stability at low gain	13
5	Packag	e information	14
	5.1	Ceramic Flat-8 package information	15
6	Orderin	g information	
7	Other ir	nformation	
	7.1	Date code	17
	7.2	Documentation	17
8	Revisio	n history	

1

RHF43B

Absolute maximum ratings and operating conditions

Symbo I	Parameter	Value	Unit
Vcc	Supply voltage ⁽¹⁾	18	
V_{id}	Differential input voltage ⁽²⁾	±1.2	V
V_{in}	Input voltage range ⁽³⁾	V _{DD} - 0.3 to 16	
l _{in}	Input current	45	mA
T_{stg}	Storage temperature	-65 to 150	ŝ
Tj	Maximum junction temperature	150	J
R _{thja}	Thermal resistance junction to ambient area ⁽⁴⁾⁽⁵⁾	125	°C 44/
R _{thjc}	Thermal resistance junction to case (4)(5)	40	-C/vv
ESD	HBM: human body model ⁽⁶⁾	2	kV
	Latch-up immunity	200	mA
	Lead temperature (soldering, 10 s)	260	°C

Table 2: Absolute maximum ratings

Notes:

⁽¹⁾The supply voltage is defined as the difference between the voltages applied on the VCC and VDD pins.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal

 $^{(3)}\mbox{The}$ magnitude of the input and output voltage must never exceed V_Cc + 0.3 V.

⁽⁴⁾Short-circuits can cause excessive heating and destructive dissipation.

⁽⁵⁾R_{th} are typical values.

 $^{(6)}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k $\!\Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

Table 3: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	3 to 16	V
V _{icm}	Common-mode input voltage	V_{DD} to V_{CC}	v
T _{oper}	Operating free-air temperature range	-55 to 125	°C

2 Electrical characteristics

Table 4: 16 V supply: VCC = 16 V, VDD = 0 V, load to VCC/2 (unless otherwise specified)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
DC perfo	rmance						
			125 °C			2.9	
Icc	Supply current	No load	25 °C		2.5	2.9	mA
			-55 °C			2.9	
			125 °C	-500		500	
Vio	Offset voltage	Vicm = Vcc/2	25 °C	-300	100	300	μV
			-55 °C	-500		500	
DV _{io}	Input offset voltage drift				1		µV/°C
			125 °C	-100		100	
l _{ib}	Input bias current	Vicm = Vcc/2	25 °C	-60	30	60	nA
			-55 °C	-100		100	
DI _{ib}	Input offset current temperature drift	Vicm = Vcc/2			100		pA/°C
			125 °C	-35		35	
l _{io}	Input offset current	Vicm = Vcc/2	25 °C	-15	1	15	nA
			-55 °C	-35		35	
D.	Differential input resistance between in+ and in-		25 °C		0.16		MΩ
IX _{IN}	Input resistance between in+ (or in-) and GND		23 0		2000		
C	Differential input capacitance between in+ and in-		25°C		8		рF
Uin	Input capacitance between in+ (or in-) and GND		25 C		2		
			125 °C	72			
CMR	Common mode rejection ratio	0 < Vicm < 16 V	25 °C	72	110		
			-55 °C	72			
			125 °C	80			
SVR	Supply voltage rejection ratio	3 V < VCC < 16 V, Vicm = Vcc/2	25 °C	90	120		dB
			-55 °C	80			
A _{VD}		Vout = 0.5 V to	125 °C	60			-
	Large signal voltage gain	15.5 V, RL = 1 kΩ,	25 °C	74	85		
		0 < VICM < 16 V	-55 °C	60			
			125 °C	15.6			
Vou	High level output voltage	RL = 1 kΩ	25 °C	15.7	15.8		V
·Un			-55 °C	15.6			
		RL = 10 kΩ	125 °C	15.8			

DocID13477 Rev 11

Electrical characteristics

Symbol	Parameter	Test condition	IS	Min.	Тур.	Max.	Unit	
N			25 °C	15.9	15.96			
VOH	High level output voltage	$RL = 10 K\Omega$	-55 °C	15.8				
			125 °C			0.3		
		RL = 1 kΩ	25 °C		0.1	0.2	N/	
N			-55 °C			0.3	v	
VOL	Low level output voltage		125 °C			0.1		
		RL = 10 kΩ	25 °C		0.04	0.06		
			-55 °C			0.1		
			125 °C	15				
	Output sink current	Vout = Vcc	25 °C	20	30			
			-55 °C	15				
lout	Output source current	Vout = Vcc	125 °C	10			mA -	
			25 °C	15	25			
			-55 °C	10				
AC perfo	rmance							
	Gain bandwidth product	f = 100 kHz, RL = 1 kΩ, CL = 100 pF	125 °C	3.5			MHz	
GBP			25 °C	6	8			
			-55 °C	3.5				
Fu	Unity gain frequency	RL = 1 kΩ, CL = 100 pF	25 °C		5		1	
φm	Phase margin	Gain = 5, RL = 1 kΩ, CL = 100 pF	25 °C		50		Degrees	
			125 °C	1.7				
SR	Slew rate	$RL = 1 k\Omega$, CL = 100 pE	25 °C	2	3		V/µs	
		0E = 100 pi	-55 °C	1.7				
en	Equivalent input noise voltage	f = 1 kHz	25 °C		7.5		nV/√Hz	
i _n	Equivalent input noise current	f = 1 kHz	25 °C		1		pA/√Hz	
THD+e _n	Total harmonic distortion + noise	Vout = (Vcc - 1 V)/5, Gain = -5.1, Vicm = Vcc/2	25 °C		0.01		%	

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit			
DC perfo	DC performance									
			125 °C			2.6				
Icc	Supply current	No load	25 °C		2.2	2.6	mA			
			-55 °C			2.6				
			125 °C	-500		500				
Vio	Offset voltage	Vicm = Vcc/2	25 °C	-300	100	300	μV			
			-55 °C	-500		500				
DV _{io}	Input offset voltage drift				1		µV/°C			
			125 °C	-100		100				
l _{ib}	Input bias current	Vcc = 4 V, Vicm = $Vcc/2$	25 °C	-60	30	60	nA			
			-55 °C	-100		100				
Dl _{ib}	Input offset current temperature drift	Vcc = 4 V, Vicm = Vcc/2			100		pA/°C			
			125 °C	-35		35				
l _{io}	Input offset current	Vcc = 4 V, Vicm = $Vcc/2$	25 °C	-15	1	15	nA			
			-55 °C	-35		35	1			
_	Differential input resistance between in+ and in-		05.00		0.16		MΩ			
Kin	Input resistance between in+ (or in-) and GND		25 °C		2000					
	Differential input capacitance between in+ and in-		25%0		8		_			
C _{in}	Input capacitance between in+ (or in-) and GND		- 25°C		2		рғ			
			125 °C	72						
CMR	Common mode rejection ratio	0 < Vicm < 3 V	25 °C	72	90					
			-55 °C	72						
		Vout = 0.5 V to	125 °C	60			dВ			
A _{VD}	Large signal voltage gain	$2.5 \text{ V}, \text{RL} = 1 \text{ k}\Omega,$	25 °C	74	85					
		0 < Vicm < 3 V	-55 °C	60						
			125 °C	2.8						
		RL = 1 kΩ	25 °C	2.9	2.95					
V			-55 °C	2.8						
VOH	High level output voltage		125 °C	2.9						
		RL = 10 kΩ	25 °C	2.94	2.98		V			
			-55 °C	2.9						
			125 °C			0.2				
V _{OL}	Low level output voltage	RL = 1 kΩ	25 °C		0.05	0.1				
			-55 °C			0.2				

Table 5: 3 V supply: VCC = 3 V, VDD = 0 V, load to VCC/2 (unless otherwise specified)

6/19

RHF43B Electrical characteristics							
Symbol	Parameter	Test condition	าร	Min.	Тур.	Max.	Unit
			125 °C			0.1	
V _{OL}	Low level output voltage	RL = 10 kΩ	25 °C		0.02	0.06	V
			-55 °C			0.1	
			125 °C	15			
	Output sink current	Vout = Vcc	25 °C	20	30		
			-55 °C	15			
lout			125 °C	10			mA
	Output source current	Vout = Vcc	25 °C	15	25		-
			-55 °C	10			
AC perfo	rmance						
	Gain bandwidth product	f = 100 kHz, RL = 1 kΩ, CL = 100 pF	125 °C	3.5			MHz
GBP			25 °C	6	7.5		
			-55 °C	3.5			
Fu	Unity gain frequency	RL = 1 kΩ, CL = 100 pF	25 °C		5		
φm	Phase margin	Gain = 5, RL = 1 kΩ, CL = 100 pF	25 °C		50		Degrees
			125 °C	1.7			
SR	Slew rate	$RL = 1 k\Omega$, CL = 100 pE	25 °C	2	2.7		V/µs
		0E = 100 pi	-55 °C	1.7			
en	Equivalent input noise voltage	f = 1 kHz	25 °C		7		nV/√Hz
i _n	Equivalent input noise current	f = 1 kHz	25 °C		0.8		pA/√Hz
THD+e _n	Total harmonic distortion + noise	Vout = (Vcc - 1 V)/5, Gain = -5.1, Vicm = Vcc/2	25 °C		0.01		%

Electrical characteristics

DocID13477 Rev 11

DocID13477 Rev 11

9/19

10/19

DocID13477 Rev 11

Electrical characteristics

57

DocID13477 Rev 11

11/19

3 Radiations

3.1 Introduction

Table 6 summarizes the radiation performance of the RHF43B.

	5110			
Туре	Feature	S	Value	Unit
	High-dose rate		300	
TID	Low-dose rate		300	krad
	ELDRS		300	
	SEL immunity (at 125 °C) up to:		110	MeV.cm ² /mg
		Invotting	LET _{th} = 1	MeV.cm ² /mg
	SET characterized	Inventing	σ = 2.00E-03	cm²/device
Heavy ions		Non-inverting	$LET_{th} = 0$	MeV.cm ² /mg
		Non-inverting	σ = 1.00E-03	cm²/device
		Subtracting	$LET_{th} = 0$	MeV.cm ² /mg
		Subtracting	σ = 2.00E-03	cm²/device

Table 6: Radiations

3.2 Total ionizing dose (TID)

The products guaranteed in radiation within the RHA QML-V system fully comply with the MILSTD-883 test method 1019 specification.

The RHF43B is RHA QML-V qualified, and is tested and characterized in full compliance with the MIL-STD-883 specification. It using a mixed bipolar and CMOS technology and is tested both below 10 mrad/s (low dose rate) and between 50 and 300 rad/s (high dose rate).

- The ELDRS characterization is performed in qualification only on both biased and unbiased parts, on a sample of ten units from two different wafer lots.
- Each wafer lot is tested at high-dose rate only, in the worst bias case condition, based on the results obtained during the initial qualification.

3.3 Heavy ions

The heavy ion trials are performed on qualification lots only. No additional test is performed.

4 Achieving good stability at low gain

At low frequencies, the RHF43B can be used in a low gain configuration as shown in *Figure 25*. At lower frequencies, the stability is not affected by the value of the gain, which can be set close to 1 V/V (0 dB), and is reduced to its simplest expression G1 = 1+Rfb/Rg. Therefore, an R-C cell is added in the gain network so that the gain is increased (up to 5) at higher frequencies (where the stability of the amplifier could be affected). At higher frequencies, the gain becomes G2 = 1+Rfb/(Rg//R).

Rg becomes a complex impedance. The closed-loop gain features a variation in frequency and can be expressed as *Equation 1*.

Equation 1

$$Gain = G1 \frac{1 + jC\omega x \left(\frac{G1R + Rfb}{G1}\right)}{1 + jCR\omega}$$

Where a pole appears at $1/2\pi$ RC and a zero at G1/2 π (G1R+Rfb)C. The frequency can be plotted as shown in *Figure 26*.

G1 (V/V)	R (Ω)	C (nF)	Rg (Ω)	Rfb (Ω)
1.1			20 k	
2	F10	1	2 k	2 k
3	510		1 k	
4			750	2.4 k
5	Not connected	Not connected	820	3.3 k

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 Ceramic Flat-8 package information

8

The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics.

	Dimensions						
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.24	2.44	2.64	0.088	0.096	0.104	
b	0.38	0.43	0.48	0.015	0.017	0.019	
С	0.10	0.13	0.16	0.004	0.005	0.006	
D	6.35	6.48	6.61	0.250	0.255	0.260	
E	6.35	6.48	6.61	0.250	0.255	0.260	
E2	4.32	4.45	4.58	0.170	0.175	0.180	
E3	0.88	1.01	1.14	0.035	0.040	0.045	
е		1.27			0.050		
L	6.51		7.38	0.256		0.291	
Q	0.66	0.79	0.92	0.026	0.031	0.036	
S1	0.92	1.12	1.32	0.036	0.044	0.052	
Ν		08			08		

Table 8: Ceramic Flat-8 package mechanical data

Ordering information 6

Order code	SMD pin	EPPL ⁽¹⁾	Quality level	Package	Lead finish	Marking ⁽²⁾	Packing
RHF43BK1	-	-	Engineering model	Flat-8	Gold	RHF43BK1	Strip pack
RHF43BK-01V	5962F0623701VXC	Yes	QML-V flight			5962F0623701VXC	

Table 9: Ordering information

Notes:

⁽¹⁾EPPL = ESA preferred part list

⁽²⁾Specific marking only. Complete marking includes the following:

- SMD pin (as indicated in above table)

- ST logo

- Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)

- QML logo (Q or V)
- Country of origin (FR = France).

Contact your ST sales office for information regarding the specific conditions for products in die form and QML-Q versions.

7 Other information

7.1 Date code

The date code is structured as shown below:

- EM xyywwz
- QML-V yywwz

where:

- x (EM only) = 3 and the assembly location is Rennes, France
- yy = last two digits of the year
- ww = week digits
- z = lot index in the week

7.2 Documentation

Table 10: Documentation provided for each type of product

Quality level	Documentation		
Engineering model	—		
	Certificate of conformance		
	QCI (groups A, B, C, D, and E) ⁽¹⁾		
	Screening electrical data		
QML-V flight	Precap report		
	PIND test ⁽²⁾		
	SEM inspection report ⁽³⁾		
	X-ray report		

Notes:

 $^{(1)}$ QCI = quality conformance inspection

⁽²⁾PIND = particle impact noise detection

⁽³⁾SEM = scanning electron microscope

8 Revision history

Table 11: Document revision history

Date	Revision	Changes	
21-May-2007	1	First public release	
10-Dec-2007	2	Changed name of pins on pinout diagram on cover page Modified supply current values over temperature range in electrical characteristics. Power dissipation removed from AMR table	
29-Jan-2008	3	Added ELRS-free rad-hard design in description on cover page Modified description of heavy ion latch-up (SEL) immunity parameter in <i>Table 2</i> .	
11-May-2009	4	Updated radiation immunity in <i>Features</i> and in <i>Table 2</i> Updated smb reference in <i>Features</i>	
15-Oct-2009	5	Updated test conditions for Avd vs. Vicm in <i>Table 4</i> and <i>Table 5</i> Updated input current and voltage noise in <i>Table 4</i> Updated order codes in <i>Table 9</i>	
30-Mar-2010	6	Added <i>Figure 4</i> and <i>Figure 5</i> Added information for ambient temperature in <i>Table 4</i> and <i>Table 5</i> Added <i>Section 4: "Achieving good stability at low gain"</i>	
20-Aug-2010	7	Corrected "L" dimension in Table 8	
27-Jul-2011	8	Added note underneath <i>Figure 27</i> and in the "Pin connections" diagram on the cover page.	
08-Nov-2012	9	Features: added silhouetteAdded Table 1: Device summaryTable 2: removed ±9 from "Supply voltage"; updated footnote1.Added Figure 6 and Figure 15Figure 17 through to Figure 22: modified titlesTable 9: Ordering information: updated table and removed ordercode RHF43BK-01V.	
06-Feb-2015	10	Replaced package name with "Flat-8S" instead of "Flat-8" Added marker to show the position of pin 1 on package silhouette, pinout and drawing. Updated Features Updated Table 1: Device summary Updated note concerning products in die form and QML-Q versions on the cover page. Table 2: Absolute maximum ratings (AMR): transferred radiation information to Table 6: Radiations. Table 8: updated dimension "L" Added Section 3: Radiations Updated Section 6: Ordering information Added Section 7; "Other information"	
24-Mar-2015	11	Replaced Flat-8S silhouette, pinout, and package with Flat-8 silhouette, pinout, and package.	

DocID13477 Rev 11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

