
SLLS092D - OCTOBER 1972 - REVISED APRIL 1998

- Single 5-V Supply
- Differential Line Operation
- Dual Channels
- TTL Compatibility
- ±15-V Common-Mode Input Voltage Range
- ±15-V Differential Input Voltage Range
- Individual Channel Strobes
- Built-In Optional Line-Termination Resistor
- Individual Frequency Response Controls
- Designed for Use With Dual Differential Drivers SN55183 and SN75183
- Designed to Be Interchangeable With National Semiconductor DS7820A and DS8820A

description

The SN55182 and SN75182 dual differential line receivers are designed to sense small differential signals in the presence of large common-mode noise. These devices give TTL-compatible output signals as a function of the polarity of the differential input voltage. The frequency response of each channel can be easily controlled by a single external capacitor to provide immunity to differential noise spikes. The output goes to a high level when the inputs are open circuited. A strobe input (STRB) is provided that, when in the low level, disables the receiver and forces the output to a high level.

NC - No internal connection

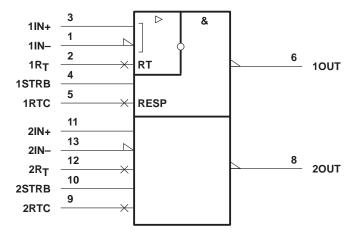
THE SN55182 IS NOT RECOMMENDED FOR NEW DESIGNS

The receiver is of monolithic single-chip construction, and both halves of the dual circuits use common power-supply and ground terminals.

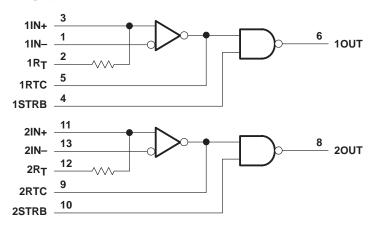
The SN55182 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN75182 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

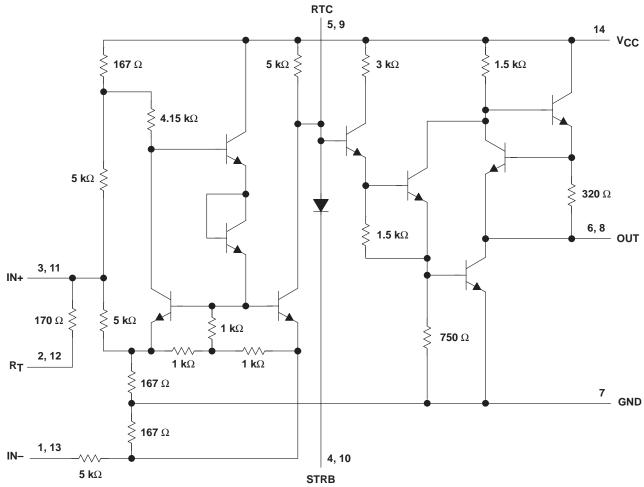
INPU	ОИТРИТ	
STRB	v_{ID}	OUT
L	Х	Н
Н	Н	н
Н	L	L


 $\begin{array}{ll} H = V_I \geq V_{IH} \text{ min or } V_{ID} \text{ more} \\ \text{positive than } V_{TH} \text{ max} \\ L = V_I \leq V_{IL} \text{ max or } V_{ID} \text{ more} \\ \text{negative than } V_{TL} \text{ max} \\ X = \text{irrelevant} \end{array}$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the J, N, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the J, N, and W packages.

schematic (each receiver)

Resistor values shown are nominal. Pin numbers shown are for the J, N, and W packages.

SLLS092D - OCTOBER 1972 - REVISED APRIL 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	8 V
Common-mode input voltage, V _{IC}	±20 V
Differential input voltage, V _{ID} (see Note 2)	±20 V
Strobe input voltage, V _{I(STRB)}	8 V
Output sink current	
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	ne 300°C
	,0

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground terminal.
 - 2. Differential voltage values are at the noninverting terminal with respect to the inverting terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK [‡]	1375 mW	11.0 mW/°C	880 mW	275 mW
J‡	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	-
W‡	1000 mW	8.0 mW/°C	640 mW	200 mW

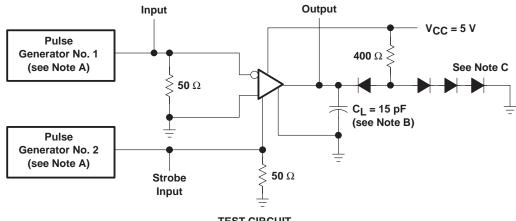
[‡] In the FK, J, and W packages, SN55182 chips are alloy mounted.

recommended operating conditions

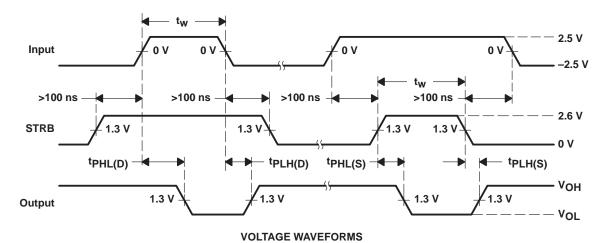
	SN55182			9	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.5	5	5.5	V
Common-mode input voltage, V _{IC}			±15			±15	V
High-level strobe input voltage, VIH(STRB)	2.1		5.5	2.1		5.5	V
Low-level strobe input voltage, V _{IL} (STRB)	0		0.9	0		0.9	V
High-level output current, IOH			-400			-400	μΑ
Low-level output current, I _{OL}			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

SLLS092D - OCTOBER 1972 - REVISED APRIL 1998

electrical characteristics over recommended ranges of $V_{CC},\ V_{IC},\$ and operating free-air temperature (unless otherwise noted)


	PARAMETER			TEST CONDITIONS†				UNIT
\/	Docitivo going innu	it threshold voltage	V _O = 2.5 V,	$V_{IC} = -3 V \text{ to } 3 V$			0.5	V
V _{IT+}	Positive-going inpo	it tilleshold voltage	I _{OH} = -400 μA	$V_{IC} = -15 \text{ V to } 15 \text{ V}$			1	V
\/	Negative going inn	out threshold voltage	$V_0 = 0.4 V$,	$V_{IC} = -3 \text{ V to 3 V}$			-0.5	V
V _{IT} _	Negative-going inp	di imesnola voltage	I _{OL} = 16 mA	$V_{IC} = -15 \text{ V to } 15 \text{ V}$			-1	V
VOH	High-level output v	oltage	V _{ID} = 1 V, V _(STRB)	= 2.1 V, I_{OH} = -400 μ A	2.5	4.2	5.5	V
VOH	r ligir-level output v	onage	$V_{ID} = -1 V, V_{(STRB)}$	$_{0}$ = 0.4 V, I_{OH} = -400 μ A	2.5	4.2	5.5	V
VOL	Low-level output ve	oltage	$V_{ID} = -1 V, V_{(STRB)}$) = 2.1 V, I _{OL} = 16 mA		0.25	0.4	V
			V _{IC} = 15 V			3	4.2	
	Input current	Inverting input	V _{IC} = 0		0	-0.5		
١,			V _{IC} = -15 V		-3	-4.2	mA	
1		Noninverting input	V _{IC} = 15 V		5	7	IIIA	
			VIC = 0		-1	-1.4		
			V _{IC} = -15 V		-7	-9.8		
I _{IH} (STRB)	High-level strobe in	nput current	V _(STRB) = 5.5 V			5	μΑ	
IL(STRB)	Low-level strobe in	put current	V(STRB) = 0			-1	-1.4	mA
ri	Input resistance	Inverting input			3.6	5		kΩ
וי	input resistance	Noninverting input			1.8	2.5		K32
	Line-terminating re	sistance	T _A = 25°C		120	170	250	Ω
los	Short-circuit outpu	t current	$V_{CC} = 5.5 \text{ V},$	-2.8	-4.5	-6.7	mA	
			V _{IC} = 15 V,	V _{ID} = -1 V		4.2	6	
Icc	Supply current (average per receiver)		$V_{IC} = 0$,	$V_{ID} = -0.5 \text{ V}$	$V_{ID} = -0.5 \text{ V}$ 6.8 1			
			$V_{IC} = -15 \text{ V},$	$V_{ID} = -1 V$		9.4	14	

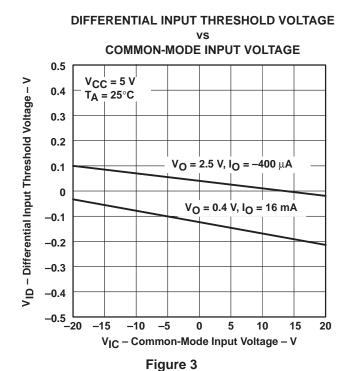
switching characteristics, V_{CC} = 5 V, T_A = 25°C


	PARAMETER	TE	ST CONDITIO	MIN	TYP	MAX	UNIT	
tPLH(D)	Propagation delay time, low- to high-level output from differential input	$R_L = 400 \Omega$,	C _L = 15 pF,	see Figure 1		18	40	ns
t _{PHL(D)}	Propagation delay time, high- to low-level output from differential input	$R_L = 400 \Omega$,	C _L = 15 pF,	see Figure 1		31	45	ns
tPLH(S)	Propagation delay time, low- to high-level output from STRB input	$R_L = 400 \Omega$,	C _L = 15 pF,	see Figure 1		9	30	ns
tPHL(S)	Propagation delay time, high- to low-level output from STRB input	$R_L = 400 \Omega$,	C _L = 15 pF,	see Figure 1	·	15	25	ns

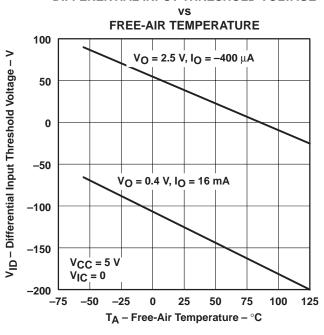
[†] Unless otherwise noted, $V_{(STRB)} \ge 2.1 \text{ V or open.}$ ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $V_{IC} = 0$, and $T_A = 25^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

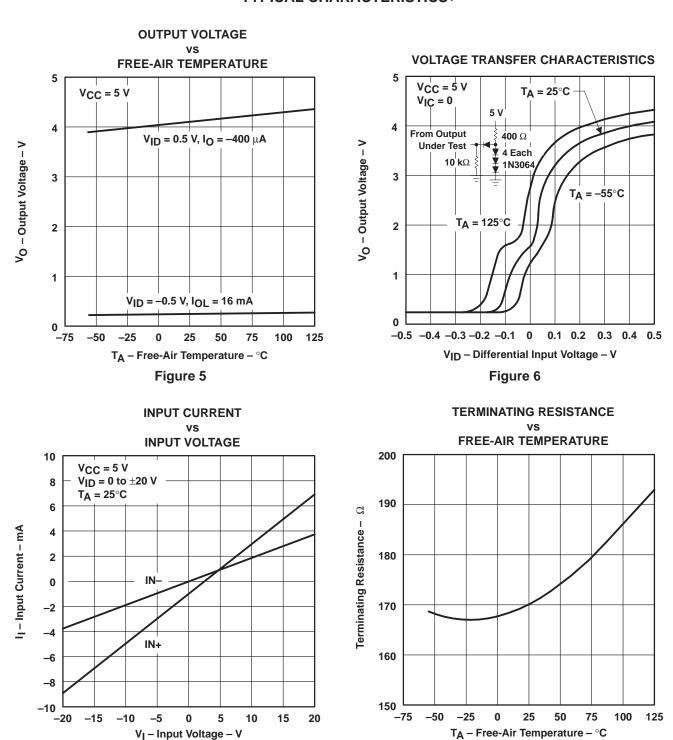

NOTES: A. The pulse generators have the following characteristics: $Z_O = 50~\Omega$, $t_f \le 10$ ns, $t_W = 0.5~\pm 0.1~\mu$ s, PRR $\le 1~MHz$.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.


Figure 1. Test Circuit and Voltage Waveforms

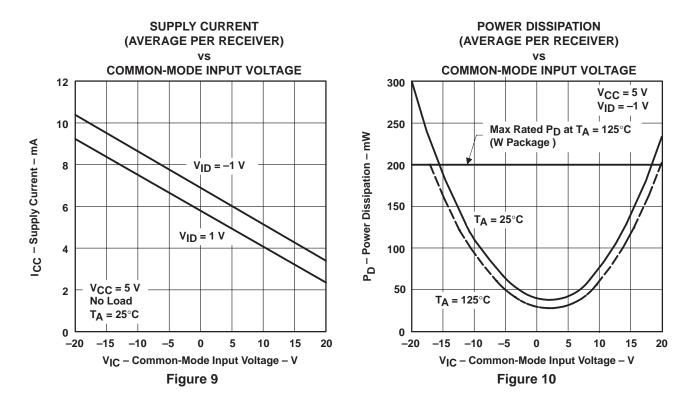
TYPICAL CHARACTERISTICS†

DIFFERENTIAL INPUT THRESHOLD VOLTAGE SUPPLY VOLTAGE 0.3 V_{ID} - Differential Input Threshold Voltage - V V_{IC} = 0 TA = 25°C 0.2 0.1 $V_{O} = 2.5 \text{ V}, I_{O}^{'} = -400 \mu \text{A}$ 0 $V_0 = 0.4 \text{ V}, I_0 = 16 \text{ mA}$ -0.1 -0.2 -0.34.5 5.5 V_{CC} - Supply Voltage - V Figure 2


DIFFERENTIAL INPUT THRESHOLD VOLTAGE

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

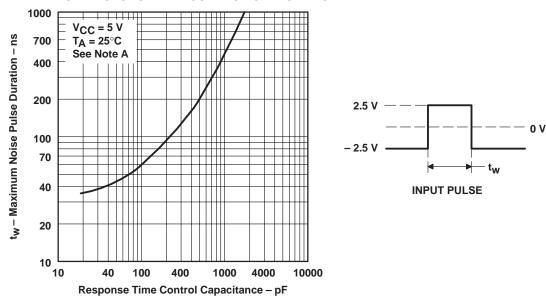
Figure 4



[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

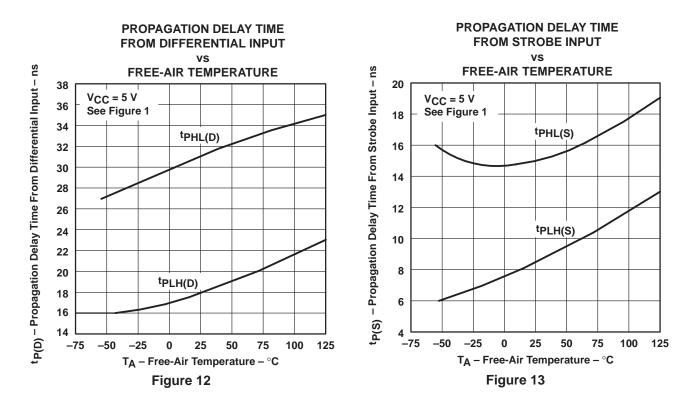
Figure 8

Figure 7

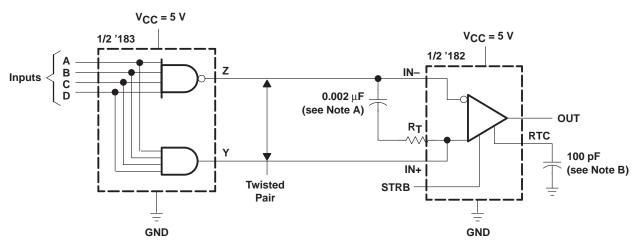


[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

MAXIMUM NOISE PULSE DURATION


MAXIMUM RESPONSE TIME-CONTROL CAPACITANCE

NOTE A: Figure 11 shows the maximum duration of the illustrated pulse that can be applied differently without the output changing from the low to high level.


Figure 11

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

APPLICATION INFORMATION

NOTES: A. When the inputs are open circuited, the output is high. A capacitor may be used for dc isolation of the line-terminating resistor. At the frequency of operation, the impedance of the capacitor should be relatively small.

Example: let
$$\begin{array}{l} f = 5 \text{ MHz} \\ C = 0.002 \ \mu F \\ \\ Z_{(C)} = \frac{1}{2\pi f C} = \frac{1}{2\pi (5 \times 10^6) (0.002 \times 10^{-6})} \\ Z_{(C)} \approx 16 \Omega \end{array}$$

B. Use of a capacitor to control response time is optional.

Figure 14. Transmission of Digital Data Over Twisted-Pair Line

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-7900801VCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
5962-7900801VDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN55182J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN75182D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75182NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75182NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75182NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ55182FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ55182J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ55182W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

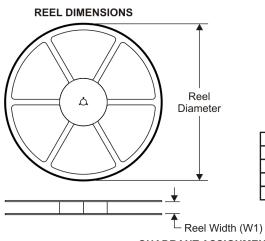
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

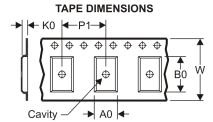
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

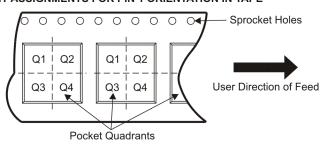
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

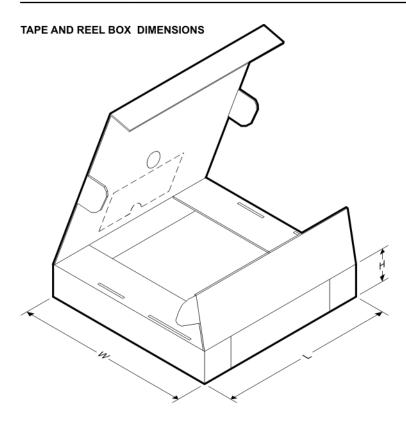

3-Mar-2009


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

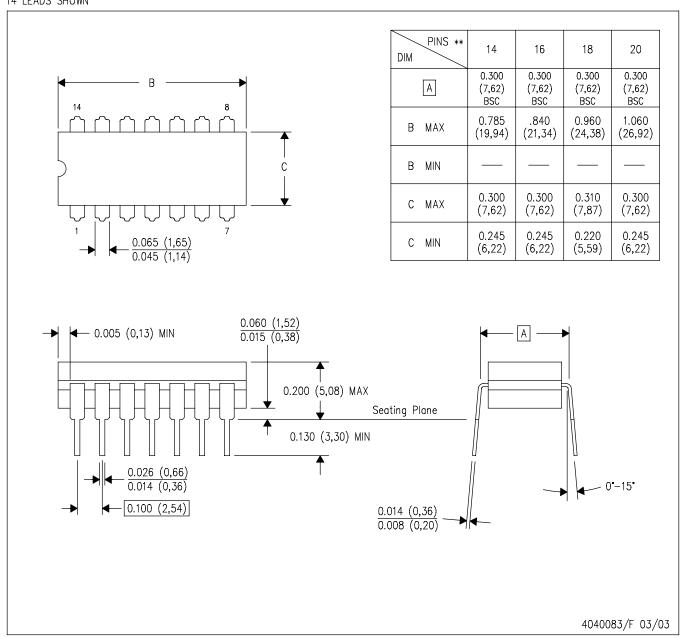

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

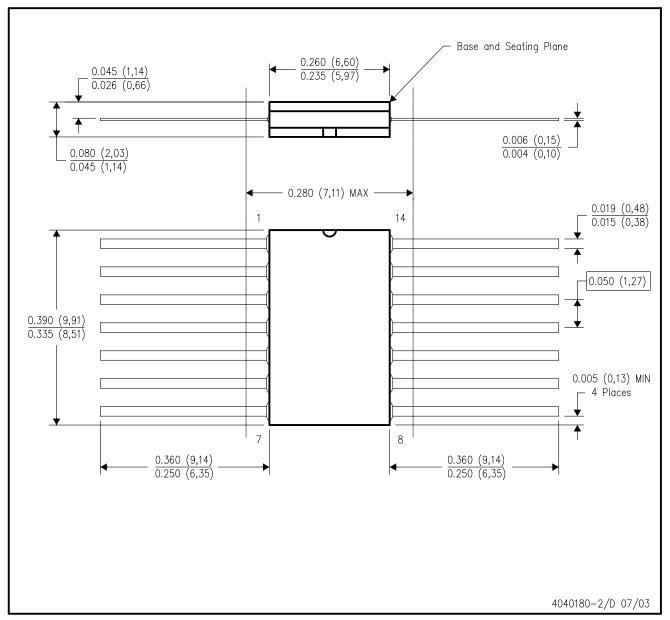
*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75182DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75182NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1



*All dimensions are nominal

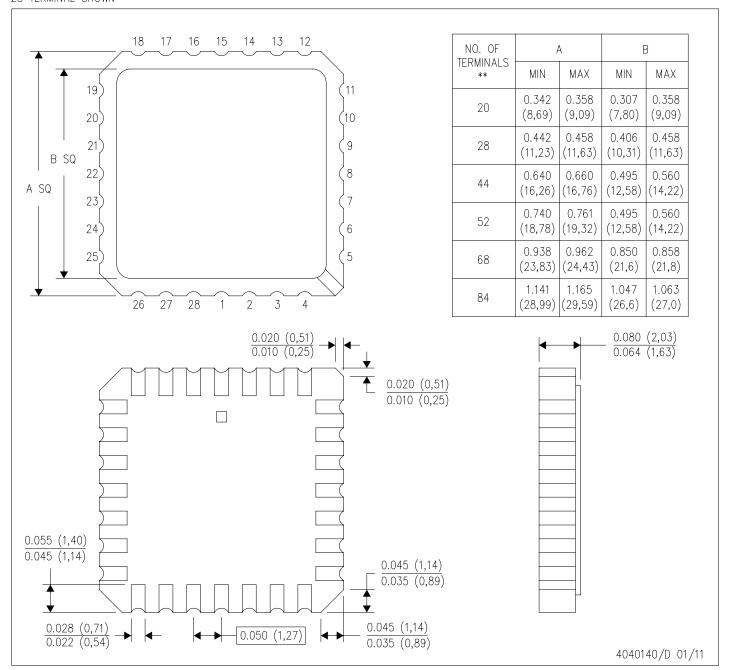
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75182DR	SOIC	D	14	2500	346.0	346.0	33.0
SN75182NSR	SO	NS	14	2000	346.0	346.0	33.0


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

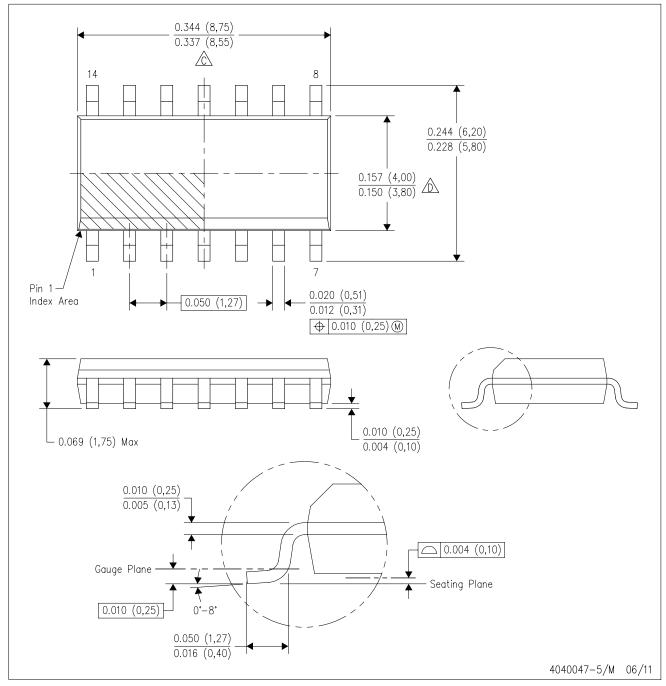
28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

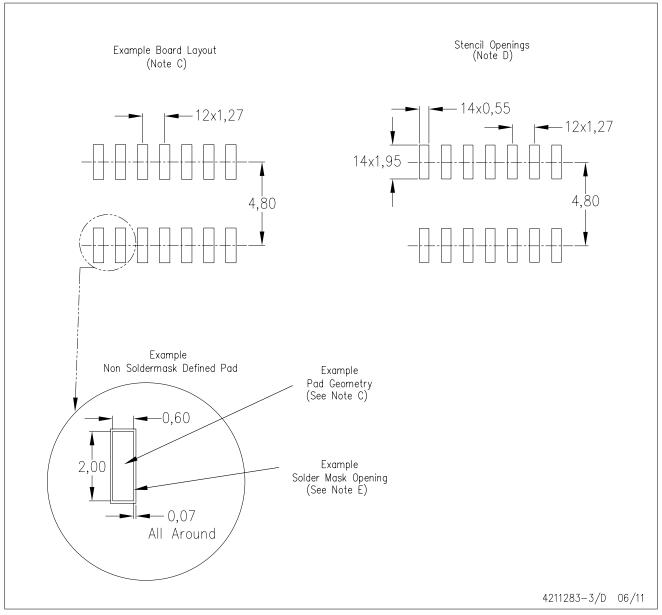
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

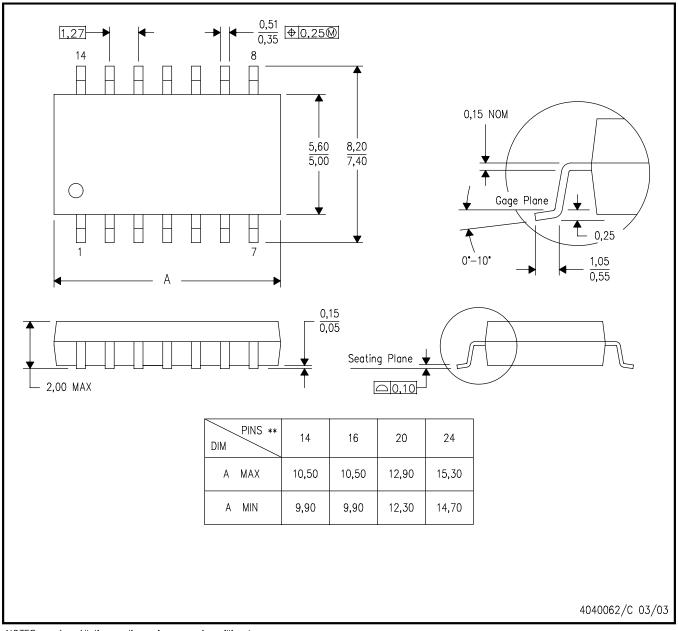


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com