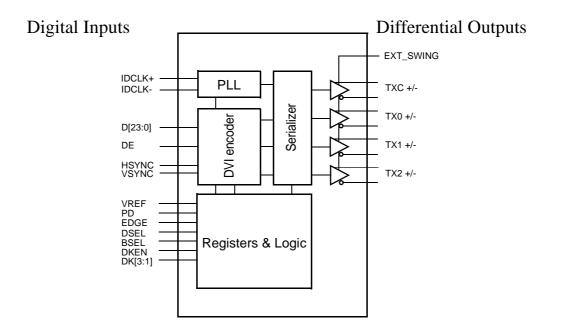


THC63DV164

170MHz 12/24Bit COLOR DVI Compliant Transmitter

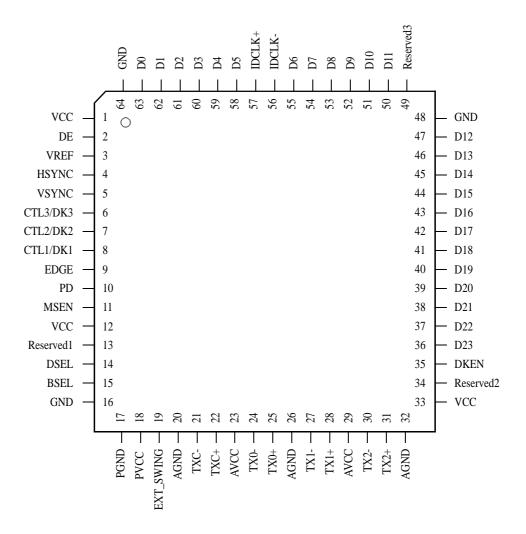
General Description

The THC63DV164 is transmitter compliant with DVI Rev.1.0. The THC63DV164 converts 24bits of CMOS/ TTL data into differential signaling data which standardized by DDWG (Digital Display Working Group). The THC63DV164 supports display resolution from VGA to UXGA(25-170MHz) with 24bit true color RGB data stream.


Excellent on-chip jitter specification and high tolerance to clock jitter is achieved by the built-in PLL based on proprietary hi-frequency PLL technologies used in the THine's LVDS products. Newly developed innovative DVI encode and decode technologies accomplished very low power consumption preferable for portable application.

THC63DV164 has 12bit or 24bit mode interface and dual edge/single clock (12bit mode) or single/dual clock edge clocking (24bit mode). THC63DV164 supports Receiver Detection.

Features


- Compliant with DVI Rev.1.0
- Wide Frequency Range: 25MHz-170MHz
- PLL requires No external components
- Programmable Single/Dual Clocking Mode
- Small Swing with V_{REF} Interface Support
- Power down mode
- Low power single 3.3V CMOS design
- 64pin TQFP
- Pin Compatible with the Silicon Image SiI164

Block Diagram

1

Pin Out

Pin Description

Pin Name	Pin #	Туре	Description
TX0+, TX0-	25, 24	Out	Differential Data output pairs. (DVI v1.0 compliant)
TX1+, TX1-	28, 27	Out	
TX2+, TX2-	31, 30	Out	
TXC+, TXC-	22, 21	Out	Differential Clock output pairs. (DVI v1.0 compliant)
D23 ~ D12	36-47	In	Top half of 24bit pixel bus.
D11 ~ D0	50-55,58-63	In	Bottom half of 24bit pixel bus / 12bit pixel input. When BSEL = High , this bus inputs the bottom half of the 24bit pixel bus. When BSEL = Low , this bus inputs 1/2 pixel (12-bit) at both rising and falling edge of the clock.
IDCLK+	57	In	Input Data Clock +.
IDCLK-	56	In	Input Data Clock This clock ONLY used in 12bit mode when DSEL = Low , dual edge clocking is turned off. It is used to provide ODD pixel data latch timing with dual clock single edge. If BSEL = High or DSEL = High , this pin should be tied to GND.

Pin Name	Pin #	Туре	Description	
DE	2	In	Data enable. This signal is high when input pixel data is valid to the transmitter and low otherwise. It is critical that this sig- nal have the same setup/hold timings as the data bus.	
HSYNC VSYNC	4 5	In	Horizontal Sync input control signal. Vertical Sync input control signal.	
CTL1/DK1 CTL2/DK2 CTL3/DK3	8 7 6	In In In	The use of multi-function inputs depends in setting of ISEL and DKEN. These inputs are regular 3.3V CMOS level inputs. These inputs pins contain weak pull down resistors so that if left unconnected, they will be Low. DKEN=LOW General purpose input CTL[3:1] are active, for back- ward compatibility. These pins must be used to send DC signal only during blanking time. DKEN=High DK[3:1] are active, these inputs are used to select de- skewing setting for the pixel data latching.	
MSEN	11	Out	Monitor Sense. This pin is an open source output. An exter- nal 5K pull-up resistor is required on this pin for systems, there is no internal pull-up resistor. High level indicates a powered on receiver is detected at the all of differential outputs.	
BSEL	15	In	Input bus select. BSEL=High Select 24bit input mode. BSEL=Low Select 12bit input mode.	
DSEL	14	In	Dual edge clock select. DSEL=High Dual edge mode is selected. IDCLK+ latches input pix- els data both falling and rising edges. DSEL=Low Single edge mode is selected. IDCLK+/- latches input pixel data on only falling or rising edges. IDCLK+ latches 1st half of data and IDCLK- latches 2nd half of data at 12bit mode.	
EDGE	9	In		

3

Pin Name	Pin #	Туре	Description	
DKEN	35	In	Setup/hold trim select. DKEN=High DK[3:1] is used as the setup/hold trim (de-skewing) setting. The trimming step is 200psec in typical. DKEN=Low Default trimming setting is used.	
VREF	3	Analog	Input reference voltage. Select the swing range of the digital pixel data and control inputs (D[23:0],DE,VSYNC,HSYNC and IDCLK+/-).	
EXT_SWING	19	Analog	Voltage swing adjust. A resistor should tie this pin to AVCC. This resistance determines the amplitude of the differential output swing. For remote display applications, 400Ω is recommended. For notebook computers, 680Ω is recommended.	
PD	10	In	Power Down PD=High Normal operation. PD=Low All Input Pins are desabled and all differential outputs are HiZ. MSEN is to Low forced.	
Reserved1	13	In	If Low, the serial interface is inactive. If you want to use it, see the application note THAN-00-004.	
Reserved2	34	In	Must be tied to GND.	
Reserved3	49	In	Must be tied to VCC.	
VCC	1,12,33	Power	Digital VCC.	
GND	16,48,64	Ground	Digital GND.	
AVCC	23,29	Power	Analog VCC.	
AGND	20,26,32	Ground	Analog GND.	
PVCC	18	Power	PLL Analog VCC.	
PGND	17	Ground	PLL Analog GND.	

Absolute Maximum Ratings 1

Supply Voltage (V _{CC})	-0.3V ~ +4.0V
CMOS/TTL Input Voltage	-0.3V ~ (V _{CC} + 0.3V)
CMOS/TTL Output Voltage	$-0.3V \sim (V_{CC} + 0.3V)$
TMDS Receiver Input Voltage	$-0.3V \sim (V_{CC} + 0.3V)$
DC Output Current	-30mA ~ 30mA
Junction Temperature	+125°C
Storage Temperature Range	-55°C ~+125°C
Lead Temperature (Soldering, 4sec)	+260°C
Maximum Power Dissipation @+25°C	1.0W

^{1. &}quot;Absolute Maximum Ratings" are those valued beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

DC Digital I/O Specifications

			V _{CC} =	3.0V ~ 3.6V,	$Ta = 0 \circ C \sim Ta$	+70°C
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	High Level Input Voltage	$V_{REF} = V_{CC}$	2.0			V
V _{IL}	Low Level Input Voltage	$V_{REF} = V_{CC}$			0.8	V
V_{DDQ}^{1}	Small Swing Voltage		1		1.8	V
V _{REF}	Input Reference Voltage	Small Swing	0.5	$V_{DDQ}/2$	1	V
		CMOS		V _{CC}		V
V _{SH} ²	Small Swing High Level Input Voltage	$V_{REF} = V_{DDQ}/2$	V _{DDQ} /2 + 300mV			V
V _{SL} ²	Small Swing Low Level Input Voltage	$V_{\text{REF}} = V_{\text{DDQ}}/2$			V _{DDQ} /2 - 100mV	V
I _{INC}	Input Current	$0V \le V_{IN} \le V_{CC}$	-10		+10	μΑ

Notes: ¹V_{DDQ} voltage defines max voltage of small swing input. It is not an actual input voltage. ² Small swing signal is apllied to D[23:0], DE,VSYNC,HSYNC and IDCLK+/-.

DC Differential Output Specifications

 $V_{CC} = 3.0V \sim 3.6V, \quad Ta = 0 \,^\circ C \, \sim +70 \,^\circ C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{OD}	Differential Voltage	$R_{LOAD} = 50\Omega$				
	Single-ended peak to peak	$R_{EXT_SWING} = 680\Omega$	300	330	370	mV
	amplitude	$R_{EXT_SWING} = 400\Omega$	450	510	570	mV
V _{ODH}	Differential High Level Out- put Voltage ¹			AVCC		V

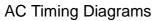
Notes: ¹Guaranteed by design.

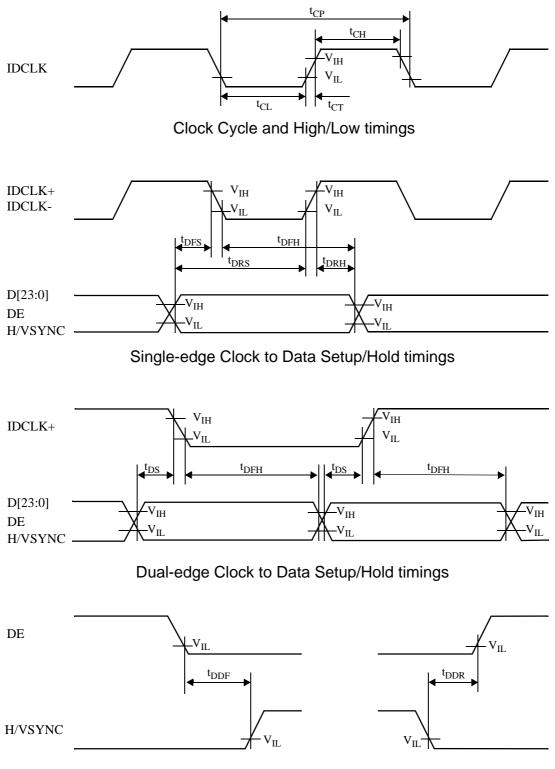
Supply Current

$V_{\rm CC} = 3.0 \rm V \sim 3.6 \rm V,$	$Ta = 0 \circ C \sim +70 \circ C$
--	-----------------------------------

r	I	55			
Symbol	Parameter	Condition	Тур.	Max.	Units
I _{OS}	Differential Output Short Cir- cuit Current	$V_{OUT} = 0V$		5	μΑ
I _{TCCS} ¹	Power-down Supply Current	PD = 0V		TBD	mA
I _{TCCW}	Transmitter Supply Current	DCLK = 165MHz, 1-pixel/clock mode, $R_{EXT_{SWING}} = 400\Omega$, Worst Case Pattern2	68	77	mA

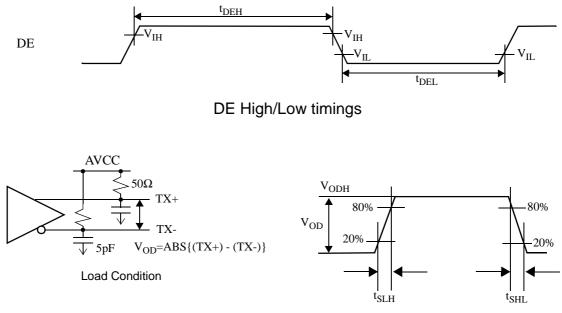
Notes: ¹Assume all inputs to the transmitter are not toggled and fixed at V_{IH} or V_{IL} level.


²Black and white checkerboard pattern, each checker is one pixel wide.


AC Specifications: (CMOS/TTL level I/F)

			$V_{\rm CC} = 3.0$)V ~ 3.6V,	$Ta = 0 \circ C \sim$	+70°C
Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{CP}	IDCLK Period		5.88		40.0	ns
t _{CH}	IDCLK High Time		2.0			ns
t _{CL}	IDCLK Low Time		2.0			ns
t _{CT}	IDCLK Transition time				5.0	ns
t _{JIT}	IDCLK Jitter				2.0	ns
t _{DFS}	Data ¹ Setup to IDCLK falling edge	DSEL = 0, DKEN = 0 $EDGE = 0$	0.6			ns
t _{DFH}	Data ¹ Hold from IDCLK falling edge	DSEL = 0, DKEN = 0 $EDGE = 0$	1.2			ns
t _{DRS}	Data ¹ Setup to IDCLK rising edge	DSEL = 0, DKEN = 0 $EDGE = 1$	0.9			ns
t _{DRH}	Data ¹ Hold from IDCLK rising edge	DSEL = 0,DKEN = 0 EDGE = 1	1.2			ns
t _{DS}	Data ¹ Setup to IDCLK rising/falling edge	DSEL = 1,DKEN = 0 $BSEL = 1,EDGE = 0$	0.7			ns
t _{DH}	Data ¹ Hold from IDCLK rising/falling edge	DSEL = 1, DKEN = 0 $BSEL = 1, EDGE = 0$	1.4			ns
t _{DDF}	V/HSYNC Delay from DE falling edge		1			t _{CP}
t _{DDR}	V/HSYNC Delay from DE rising edge		1			t _{CP}
t _{DEH}	DE High Time				8191	t _{CP}
t _{DEL}	DE Low Time ²		128			t _{CP}
t _{SLH}	Differential Swing Low to High Transition Time ³	$C_{LOAD} = 5pF$ $R_{LOAD} = 50\Omega$ $R_{EXT_SWING} = 400\Omega$	0.3	0.5	0.7	ns
t _{SHL}	Differential Swing High to Low Transition Time ³	$C_{LOAD} = 5pF$ $R_{LOAD} = 50\Omega$ $R_{EXT_SWING} = 400\Omega$	0.3	0.5	0.7	ns
t _{STEP}	De-skew trim increment			200		ps
t _{TPLL}	Phase Lock Loop Setup				10.0	ms

Notes: ¹ Data includes D[23:0], DE, VSYNC and HSYNC. ² DE low time as defined as per DVI 1.0 Specification, Section 3.4 ³ On the TXC+/- outputs.


Timing Diagrams

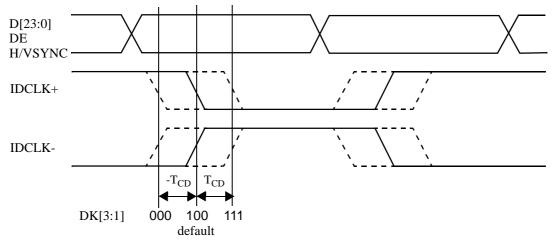
DE to H/VSYNC Delay timings

AC Timing Diagrams

Differential Output Timings

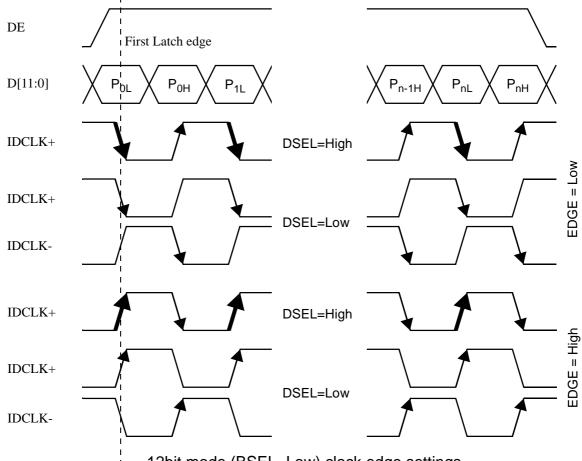
Data Setup/Hold Trim

Input clock to data setup hold time can be adjusted through the use of the trim (de-skew) feature. When DKEN=High, the configuration pins DK[3:1] can be used to vary the input setup/hold time by amount T_{CD} given by the following formula.


 $T_{CD} = (DK[3:1] - 4) \times 200p$

Where

T_{CD} is the amount of setup/hold variation.

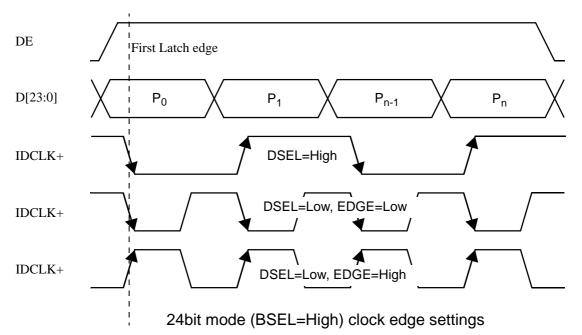

DK[3:1] is the setting of the configuration pins.

This feature can be used in both 12 and 24 bit mode. If DKEN=LOW, the DK[3:1] input are ignored and default setting of $T_{CD} = 0$ is used.

Data setup/hold trimming

Data Mapping

12bit mode (BSEL=Low) clock edge settings


	P0		P	1			'n
	P _{0L}	P _{0H}	P _{1L}	P _{1H}		P _{nL}	P _{0H}
	Low	High	Low	High		Low	High
D11	G0[3]	R0[7]	G1[3]	R1[7]		Gn[3]	Rn[7]
D10	G0[2]	R0[6]	G1[2]	R1[6]		Gn[2]	Rn[6]
D9	G0[1]	R0[5]	G1[1]	R1[5]		Gn[1]	Rn[5]
D8	G0[0]	R0[4]	G1[0]	R1[4]		Gn[0]	Rn[4]
D7	B0[7]	R0[3]	B1[7]	R1[3]		Bn[7]	Rn[3]
D6	B0[6]	R0[2]	B1[6]	R1[2]		Bn[6]	Rn[2]
D5	B0[5]	R0[1]	B1[5]	R1[1]		Bn[5]	Rn[1]
D4	B0[4]	R0[0]	B1[4]	R1[0]		Bn[4]	Rn[0]
D3	B0[3]	G0[7]	B1[3]	G1[7]		Bn[3]	Gn[7]
D2	B0[2]	G0[6]	B1[2]	G1[6]		Bn[2]	Gn[6]
D1	B0[1]	G0[5]	B1[1]	G1[5]		Bn[1]	Gn[5]
D0	B0[0]	G0[4]	B1[0]	G1[4]		Bn[0]	Gn[4]

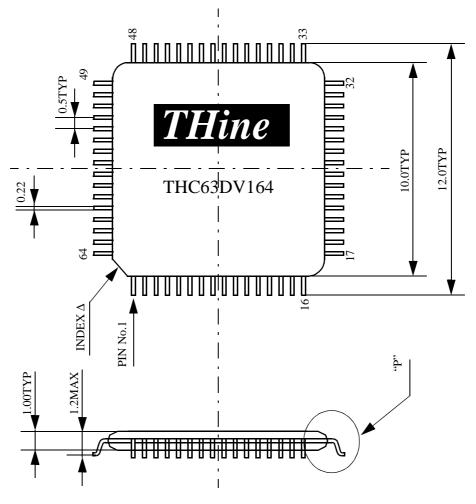
12bit Mode Data Mapping Table

Notes: ¹In this figure, clock edges represented by arrows signify latching edge. Primary latch edge is indicated by bold arrow, which latches the lower half of pixel (L) data.

 2 Color pixel components are represented as R:Red, G:Green and B:Blue.

³Bit significance with in a color: [7:0] = [MSB:LSB]

Notes: In 24 bit Single Clock Dual Edge mode, the THC63DV164 will look at the first clock edge (either falling or rising) after DE goes high to determine the first pixel data. EDGE pin has no affect in 24 bit Single Clock Dual Edge mode.


	P0	P1	Pn
D23	R0[7]	R1[7]	Rn[7]
D22	R0[6]	R1[6]	Rn[6]
D21	R0[5]	R1[5]	Rn[5]
D20	R0[4]	R1[4]	Rn[4]
D19	R0[3]	R1[3]	Rn[3]
D18	R0[2]	R1[2]	Rn[2]
D17	R0[1]	R1[1]	Rn[1]
D16	R0[0]	R1[0]	Rn[0]
D15	G0[7]	G1[7]	Gn[7]
D14	G0[6]	G1[6]	Gn[6]
D13	G0[5]	G1[5]	Gn[5]
D12	G0[4]	G1[4]	Gn[4]
D11	G0[3]	G1[3]	Gn[3]
D10	G0[2]	G1[2]	Gn[2]
D9	G0[1]	G1[1]	Gn[1]
D8	G0[0]	G1[0]	Gn[0]
D7	B0[7]	B1[7]	Bn[7]
D6	B0[6]	B1[6]	Bn[6]
D5	B0[5]	B1[5]	Bn[5]
D4	B0[4]	B1[4]	Bn[4]
D3	B0[3]	B1[3]	Bn[3]
D2	B0[2]	B1[2]	Bn[2]
D1	B0[1]	B1[1]	Bn[1]
D0	B0[0]	B1[0]	Bn[0]

24bit Mode Data Mapping Table

Notes: ¹In this figure, clock edges represented by arrows signify latching edge. ²Color pixel components are represented as R:Red, G:Green and B:Blue.

³Bit significance with in a color: [7:0] = [MSB:LSB]

Package

UNITS: mm

Notes to Users:

- 1. The contents of this data sheet are subject to change without prior notice.
- 2. Circuit diagrams shown in this data sheet are examples of application. Therefore, please pay sufficient attention when designing circuits. Even if there are incorrect descriptions, we are not responsible for any problem due to them. Please note that incorrect descriptions sometimes cannot be corrected immediately if found.
- 3. Our copyright and know-how are included in this data sheet. Duplication of the data sheet and disclosure to other persons are strictly prohibited without our permission.
- 4. We are not responsible for any problems of industrial proprietorship occurring during THC63DV164 use, except for those directly related to THC63DV164's structure, manufacture or functions. THC63DV164 is designed on the premise that it should be used for ordinary electronic devices. Therefore, it shall not be used for applications that require extremely high-reliability (space equipment, nuclear control equipment, medical equipment that affects people's lives, etc.). In addition, when using THC63DV164 for traffic signals, safety devices and control/safety units in transportation equipment, etc., appropriate measures should be taken.
- 5. We are making the utmost effort to improve the quality and reliability of our products. However, there is a very slight possibility of failure in semiconductor devices. To avoid damage to social or official organizations, much care should be taken to provide sufficient redundancy and fail-safe design.
- 6. No radiation-hardened design is incorporated in THC63DV164.
- 7. Judgment on whether THC63DV164 comes under strategic products prescribed by the Foreign Exchange and Foreign Trade Control Law is the user's responsibility.
- 8. This technical document was provisionally created during development of THC63DV164, so there is a possibility of differences between it and the product's final specifications. When designing circuits using THC63DV164, be sure to refer to the final technical documents.
- 9. User acknowledges that no warranty whatsoever, whether express, implied or statutory, of non-infringement of patent rights or any other intellectual property rights of other's is provided hereunder for the use of LSI sold by THine in any implementation or application not in compliance, in part or in whole, with the Digital Visual Interface (DVI) specification as being promoted by Digital Display Working Group (DDWG), and User further acknowledges that User shall be solely responsible for any consequence, technical or legal, of such implementation or application.

THine Electronics, Inc. 1-10-7, 6F, Hatchobori, Chuo-ku, Tokyo, 104-0032 Japan Tel: 81-3-3555-0666 Fax: 81-3-3555-0677